Synopsis
Set an option for the current MCMC sampler.
Syntax
set_sampler_opt(opt, value)
Example
>>> set_sampler_opt('scale', 3)
PARAMETERS
The parameters for this function are:
Parameter | Type information | Definition |
---|---|---|
opt | str | The option to change. Use `get_sampler` to view the available options for the current sampler. |
value | The value for the option. |
Notes
The options depend on the sampler. The options include:
Item | Definition |
---|---|
defaultprior | Set to False when the default prior (flat, between the parameter's soft limits) should not be used. Use `set_prior` to set the form of the prior for each parameter. |
inv | A bool, or array of bools, to indicate which parameter is on the inverse scale. |
log | A bool, or array of bools, to indicate which parameter is on the logarithm (natural log) scale. |
original | A bool, or array of bools, to indicate which parameter is on the original scale. |
p_M | The proportion of jumps generated by the Metropolis jumping rule. |
priorshape | An array of bools indicating which parameters have a user-defined prior functions set with `set_prior` . |
scale | Multiply the output of `covar` by this factor and use the result as the scale of the t-distribution. |
Bugs
See the bugs pages on the Sherpa website for an up-to-date listing of known bugs.
See Also
- confidence
- set_conf_opt, set_covar_opt, set_proj_opt
- data
- set_areascal, set_arf, set_backscal, set_bkg, set_coord, set_counts, set_data, set_dep, set_exposure, set_grouping, set_quality, set_rmf, set_staterror, set_syserror
- filtering
- set_filter
- methods
- gridsearch, levmar, list_iter_methods, list_methods, moncar, neldermead, set_iter_method, set_iter_method_opt, set_method, set_method_opt
- modeling
- get_par, set_bkg_model, set_bkg_source, set_full_model, set_model, set_par, set_pileup_model, set_source
- statistics
- get_sampler, set_prior, set_sampler, set_stat
- utilities
- set_analysis, set_default_id
- visualization
- image_setregion