Gallery: Plotting Data
Examples
-
1D PHA data:
- Source spectrum:
- Deconvolved source spectrum in Photons/sec/cm2/keV vs. Energy (keV)
- Background spectrum in Counts/sec/keV vs. Energy (keV)
- ACIS-S/HETG source grating spectra in Counts/sec/Angstrom vs. Wavelength (Angstrom)
- HRC-S/LETG source grating spectra in Counts/sec/Angstrom vs. Wavelength (Angstrom)
- ARF data: cm2 vs. Energy (keV)
- 2D Image data:
1D PHA data: Counts/sec/keV versus Energy (keV)
Here we display a background-subtracted PHA source counts spectrum filtered in energy space.
Sherpa 4.13
load_pha("3c273.pi") subtract() notice_id(1, 0.1, 6.0) plot_data() |
Sherpa 3.4
data 3c273.pi subtract notice energy 0.1:6.0 lplot data |
For detailed information about each of the steps in the script, see the Sherpa thread "Introduction to Fitting PHA Spectra", which also contains links to the ahelp files for each Sherpa function used.
1D PHA data: Source spectrum in Counts/sec/Angstrom versus Wavelength (Angstrom)
Here we display a background-subtracted PHA source counts spectrum filtered in wavelength space, with a linear-scale y-axis and log-scale x-axis.
Sherpa 4.13
load_pha("3c273.pi") subtract() notice_id(1, 0.1, 6.0) set_analysis("wave") plot_data() log_scale(X_AXIS) |
Sherpa 3.4
data 3c273.pi subtract notice energy 0.1:6.0 analysis wave sherpa.dataplot.x_log = 1 lplot data |
For detailed information about the input data in this script, see the Sherpa thread "Introduction to Fitting PHA Spectra".
1D PHA data: Deconvolved source spectrum in Photons/sec/cm2/keV vs. Energy (keV)
Here we display a deconvolved source spectrum in photon flux units, along with the corresponding unconvolved source model, on a logarithmic scale.
Sherpa 4.13
load_pha("3c273.pi") subtract() notice_id(1, 0.1, 6.0) plot_data() set_source(xsphabs.abs1 * powlaw1d.p1) abs1.nH = 0.07 freeze(abs1.nH) guess(p1) plot_source() xx = get_fit_plot().dataplot.x dd = get_fit_plot().dataplot.y ee = get_fit_plot().dataplot.yerr mm = get_fit_plot().modelplot.y src = get_source()(xx) add_curve(xx, dd/mm*src, [ee/mm*src], ["line.style", "0", "err.style", "line", "symbol.style", "4","symbol.size", "3", "symbol.fill", "false"]) set_plot_ylabel("Photons sec^{-1} cm^{-2} kev^{-1}") set_plot_xlabel("Energy (keV)") plot_source(overplot=True) log_scale() |
Sherpa 3.4
() = evalfile("sherpa_plotfns.sl"); data 3c273.pi subtract notice energy 0.1:6.0 paramprompt off source = xsphabs[abs1] * powlaw1d[p1] abs1.nH = 0.07 freeze abs1 guess p1 fit set_log lp 2 ufit ratio |
For detailed information about the steps in this script, see the Sherpa FAQ entry "How can I plot a spectrum in photon flux units (photons s-1 cm-2 keV-1)?", or the Sherpa 3.4 thread "Advanced customization of Sherpa plots."
1D PHA data: Background spectrum in Counts/sec/keV versus Energy (keV)
Here we display the background counts spectrum associated with a PHA source spectrum.
Sherpa 4.13
load_pha("3c273.pi") plot_bkg() [or, if bkg not automatically loaded] load_pha("3c273.pi") load_bkg("3c273_bg.pi") plot_bkg() |
Sherpa 3.4
data 3c273.pi lplot back [or, if bkg not automatically loaded] data 3c273.pi back 3c273_bg.pi lplot back |
For detailed information about the input data in this script, see the Sherpa thread "Introduction to Fitting PHA Spectra."
1D PHA data: ACIS-S/HETG source grating spectra in Counts/sec/Angstrom vs. Wavelength (Angstrom)
Here we display the +1/-1 HEG and +/-1 MEG grating spectral orders resulting from an ACIS-S/HETG observation of a source, filtered in wavelength space.
Sherpa 4.13
load_pha(1, "459_heg_m1_bin10.pha") load_pha(2, "459_heg_p1_bin10.pha") load_pha(3, "459_meg_m1_bin10.pha") load_pha(4, "459_meg_p1_bin10.pha") set_analysis("wave") ignore() notice(1., 15.) plot("data", 1, "data", 2, "data", 3, "data", 4) |
Sherpa 3.4
data 1 459_heg_m1_bin10.pha data 2 459_heg_p1_bin10.pha data 3 459_meg_m1_bin10.pha data 4 459_meg_p1_bin10.pha rsp[hegm1] rsp[hegp1] rsp[megm1] rsp[megp1] hegm1.arf = 459_heg_m1.arf hegp1.arf = 459_heg_p1.arf megm1.arf = 459_meg_m1.arf megp1.arf = 459_meg_p1.arf instrument 1 = hegm1 instrument 2 = hegp1 instrument 3 = megm1 instrument 4 = megp1 analysis wave ignore allsets all notice allsets wave 1:15 lplot 4 data 1 data 2 data 3 data 4 |
For detailed information about each of the steps in the script, see the Sherpa thread "Fitting Grating Data."
1D PHA data: HRC-S/LETG source grating spectra
Here we display a customized plot of the +1/-1 LEG spectral grating orders resulting from an HRC-S/LETG observation of a source. The data points are connected with a solid line, and the data point symbols and y-axis error bars are removed.
Sherpa 4.13
load_pha(1, "460_leg_m1_bin10.pha") load_pha(2, "460_leg_p1_bin10.pha") set_analysis("wave") plot("data", 1, "data", 2) prefs = get_data_plot_prefs() prefs["linestyle"] = chips_solid prefs["symbolstyle"] = chips_none prefs["yerrorbars"] = 0 plot_data() |
Sherpa 3.4
data 1 460_leg_m1_bin10.pha data 2 460_leg_p1_bin10.pha frmf1d[rmfm1](460_leg_-1.grmf) frmf1d[rmfm2](460_leg_-2.grmf) frmf1d[rmfm3](460_leg_-3.grmf) frmf1d[rmfp1](460_leg_1.grmf) frmf1d[rmfp2](460_leg_2.grmf) frmf1d[rmfp3](460_leg_3.grmf) farf1d[arfm1](460_LEG_-1.garf) farf1d[arfm2](460_LEG_-2.garf) farf1d[arfm3](460_LEG_-3.garf) farf1d[arfp1](460_LEG_1.garf) farf1d[arfp2](460_LEG_2.garf) farf1d[arfp3](460_LEG_3.garf) instrument 1 = arfm1*rmfm1 + arfm2*rmfm2 + arfm3*rmfm3 instrument 2 = arfp1*rmfp1 + arfp2*rmfp2 + arfp3*rmfp3 analysis wave sherpa.dataplot.curvestyle="solid" sherpa.dataplot.symbolstyle ="none" sherpa.dataplot.y_errorbars = 0 lplot 2 data 1 data 2 |
For detailed information about each of the steps in the script, see the Sherpa thread "Fitting Multiple Orders of HRC-S/LETG Data."
ARF data: cm2 vs. Energy (keV)
Here we display the Auxiliary Response Function (ARF) corresponding to a particular ACIS observation of a source.
Sherpa 4.13
load_pha("3c273.pi") plot_arf() [or, if ARF not automatically loaded] load_pha("3c273.pi") load_arf("3c273.arf") plot_arf() |
Sherpa 3.4
data 3c273.pi lplot arf [or, if ARF not automatically loaded] data 3c273.pi arf = readarf("3c273.arf") lplot arf |
For detailed information about the input data in this script, see the Sherpa thread "Introduction to Fitting PHA Spectra."
2D Image data: DS9 source counts image
Here we display the 2-dimensional counts image of a source in DS9, Sherpa's default data imager.
Sherpa 4.13
load_image("image2.fits") image_data() set_coord("physical") set_stat("cash") set_method("simplex") notice2d("circle(4072.46,4249.34,108)") image_data() |
Sherpa 3.4
data image2.fits image data coord physical statistic cash method simplex ignore all notice physical "circle(4072.46,4249.34,108)" image data |
For detailed information about each of the steps in the script, see the Sherpa thread "Fitting FITS Image Data."
2D Image data: Surface brightness profile in Counts/pixel2 vs. Radius (pixels)
Here we display a background-subtracted radial profile extracted from a 2D Image data set (either spatial table or image file) with the CIAO tool dmextract.
Sherpa 4.13
load_data(1, "1838_rprofile_rmid.fits", 3, \ ["RMID","SUR_BRI","SUR_BRI_ERR"]) plot_data() |
Sherpa 3.4
read data 1 "1838_rprofile_rmid.fits[columns rmid,sur_bri]" FITSBIN read errors 1 "1838_rprofile_rmid.fits[columns rmid,sur_bri_err]" FITSBIN lplot 2 data 1 errors 1 |
For detailed information about the input data in the script, see the CIAO thread "Obtain and Fit a Radial Profile."