### The Chandra Galactic Bulge Survey

Manuel Torres (SRON/Nijmegen RU)



Peter Jonker<sup>1,2</sup>, Rob Hynes<sup>3</sup>, Chris Johnson<sup>3</sup>, Tom Maccarone<sup>4</sup>, Chris Britt<sup>4</sup>, Gijs Nelemans<sup>2</sup>, Serena Repetto<sup>2</sup> Danny Steeghs<sup>5,6</sup>, Sandra Greiss<sup>5</sup>, Jianfeng Wu<sup>6</sup>, Craig Heinke<sup>7</sup>,

<sup>1</sup>SRON, <sup>2</sup> Radboud Univ. Nijmegen, <sup>3</sup> Louisiana State University, <sup>4</sup> Texas Tech Univ. <sup>5</sup> Univ. of Warwick, <sup>6</sup> Harvard-Smithsonian Center for Astrophysics, <sup>7</sup> Univ. of Alberta

fom Wevers<sup>2</sup>,

### The GBS goals are constraining:

- Black-hole formation and neutron star Equation of State.
  - Finding (eclipsing) low-mass X-ray binaries in quiescence.

## tion of State. quiescence.

### The GBS goals are constraining:

- Black-hole formation and neutron star Equation of State. Finding (eclipsing) low-mass X-ray binaries in quiescence.
- Common envelope phase in binary evolution.

**Comparing the number of observed sources in each** source class with predictions.

### The GBS goals are constraining:

- Black-hole formation and neutron star Equation of State. Finding (eclipsing) low-mass X-ray binaries in quiescence.
- Common envelope phase in binary evolution.

**Comparing the number of observed sources in each** source class with predictions.

Finding progenitors to SN Type Ia.

**Deriving the (magnetic) white dwarf mass distribution in CVs** 

## The GBS area:



### Extinction map i-band

## A multi-wavelength project: X-ray survey.

 Sensitive to faint sources and excellent position accuracy. 260 observations. 2 ks each.



#### The majority of sources are 3 count detections.





## A multi-wavelength project: optical survey.

- r',i' < 23 and  $H_{\alpha}$  imaging with Mosaic-II.
- Mosaic-II and DECam time-resolved photometry.





## A multi-wavelength project: optical survey.

- r',i' < 23 and  $H_{\alpha}$  imaging with Mosaic-II.
- Mosaic-II and DECam time-resolved photometry.
- Spectroscopy with VIMOS (VLT), EFOSC2 (NTT), GMOS (Gemini).





## **First Results**

#### X-RAY SURVEY

 The Galactic Bulge Survey: Outline and X-ray Observations (Jonker et al. 2011)
 The Galactic Bulge Survey: Completion of the X-Ray Survey Observations (Jonker et al. 2014)

#### SHALLOW PUBLIC SURVEYS

3.- Identification of Galactic Bulge Survey X-Ray Sources with Tycho-2 Stars (Hynes et al. 2012)4.- Radio sources in the Chandra Galactic Bulge Survey (Maccarone et al. 2012)

#### NEAR-INFRARED SURVEY

5.- Near-infrared counterparts to the Galactic Bulge Survey X-ray source population (Greiss et al. 2014)

#### **OPTICAL (VARIABILITY) SURVEY**

6.- Variability of Optical Counterparts in the Chandra Galactic Bulge Survey (Britt et al. 2014)

#### OPTICAL (SPECTROSCOPY) SURVEY

7.- Identification of 23 accreting binaries in the Galactic Bulge Survey (Torres et al. 2014)
8.- Identification of Five Interacting Binaries in the Galactic Bulge Survey (Britt et al. 2013)
9 Gemini Spectroscopy of Galactic Bulge Sources: A Population of Hidden Accreting Binaries Revealed? Wu et al. submitted.

#### **INDIVIDUAL SOURCES**

10.- HD 314884: a slowly pulsating B star in a close binary (Johnson et al. 2014) 11.- CXOGBS J174444.7-260330: a new long orbital period cataclysmic variable in a low state (Ratti et al. 2013) 12.- CXOGBS J173620.2-293338: A Candidate Symbiotic X-Ray Binary Associated with a Bulge Carbon Star (Hynes et al. 2014)

http://www.sron.nl/~peterj/gbs/

### **INDIVIDUAL OBJECTS**



# CX44 (=AX J1755.7-2818): quiescente LMXB or CV

### Photometric long-term variability and $L_x = 1e^{32}$ erg/s



**Mosaic-II shows** flickering

**DECam shows** modulation

## CX377: a likely quiescent LMXB



Ha: FWHM = 1200 km/s

# Hα long-term variability. F-type companion. High extinction (distant)

 $L_x = 8e^{32} erg/s$ 

# Unveilig accreting binaries (Wu et al. 2014) **Optimal subtraction of spectral template to objects that** do not show H $\alpha$ in emission.





Ha: FWHM = 660 km/s

#### Ha: FWHM = 1350 km/s

## CX332: a candidate symbiotic X-ray binary





At Bulge distance:  $L_x = 2e^{32} \text{ erg/s}$ .





# CX1004: a quiescent black hole LMXB? Hα profile consistent with a BH LMXB or eclipsing CV. M-type companion. Low extinction (nearby). $L_x = 2e^{30} \text{ erg/s}$





Ha: FWHM = 2100 km/s $\Delta v = 1170 \text{ km/s}$ .



#### **DECam shows** flickering

### The GBS Predictions



## The GBS predictions and strategy:

### **Survey upper limit:**

 $F_x = (1-3)e^{-14} erg/s/cm^2$ 

### $(L_x = (1-3)e^{31} (d/1 \text{ kpc})^2 \text{ erg/s})$



polars and quiescent LMXBs

# Number of non-magnetic CVs, intermediate

# Hα long-term variability: Hα long-term variability:





#### Tores et al. (2014)

### SDSS J102347.6+003841



| ~ | արություն |
|---|-----------|
| 0 |           |
| - |           |
|   |           |

### SDSS J102347.6+003841



# A variability project: optical

#### 168 optical variables





Britt, Hynes et al. (2014)



## A variability project: optical

• Blanco 4m/Mosaic-II. r'-band only. 12-18 July 2010. Covering 3/4 of the GBS area (16 < r' < 23)...





#### 98 Off-chip

Britt, Hynes et al. (2014)

## Variability not enough to confirm counterparts.



# A variability project: infrared • VVV/UKIDSS GPS/2MASS comparison. Greis, Steeghs et al. (2013).





CXB0282 (RA = 266.22813, Dec = -32.195942) RA = 266.2277, Dec = -32.1956, dist = 1.776 and  $\chi^2$  = 73.8242707373



### donor star dominated light curves



