A Multiwavelength View of the HST Frontier Cluster MACS J0416.1-2403

Georgiana Ogrean

Hubble Fellow

Harvard-Smithsonian Center for Astrophysics Cambridge, MA

Christine Jones, Reinout van Weeren, William Forman, Felipe Santos (CfA), Stephen Murray (JHU)

Hubble's Bucket List

Frontier Fields

PUSHING THE LIMITS OF THE HUBBLE SPACE TELESCOPE

Hubble's Bucket List

Frontier Fields

PUSHING THE LIMITS OF THE HUBBLE SPACE TELESCOPE

Hubble's Bucket List

Frontier Fields

PUSHING THE LIMITS OF THE HUBBLE SPACE TELESCOPE

0.5 - 3 keV Chandra surface brightness map, based on 180 ks of data (PIs: Murray, Jones).

0.5 - 3 keV Chandra surface brightness map, based on 180 ks of data (PIs: Murray, Jones).

Is C1 a cool core?

0.5 - 3 keV Chandra surface brightness map, based on 180 ks of data (PIs: Murray, Jones).

The ratio: $R_{S} = S_{0,1}/S_{0,2}$ is closest to 1 in the direction of the "hidden" subcluster.

C1 is undergoing a merger with a less massive cluster not immediately visible in the X-ray map.

Is C2 a relaxed cluster?

C2

C2 is also undergoing a merger with a smaller cluster not immediately visible in the X-ray map.

Provisional Summary

C1 is merging

- strongly elongated
- hot core
- high central entropy
- ICM substructure
- C1 = multiple subclusters

C2 is merging

- flat X-ray brightness
- poor/unphysical β -model fit
- density discontinuity in the ICM

Are C1 and C2 interacting with each other?

 no clear evidence of typical merger shocks

- no clear evidence of typical merger shocks
- no evidence of diffuse radio emission like, e.g., in the Bullet Cluster or A3667

VLA low resolution Chandra 0.5-3 keV

C1

C2

R. van Weeren

- no clear evidence of typical merger shocks
- no evidence of diffuse radio emission like, e.g., in the Bullet Cluster or A3667
- no large dissociation between the DM and the gas components (Jauzac et al. 2014)

- no clear evidence of typical merger shocks
- no evidence of diffuse radio emission like, e.g., in the Bullet Cluster or A3667
- no large dissociation between the DM and the gas components (Jauzac et al. 2014)

C1 and C2 have not yet merged with each other

Summary

- The HST Frontier cluster MACS J0416.1-2403 is a hot (T ~ 10 keV), massive (M ~ 1e15 M_{\star}) merging cluster.
- The main subclusters are interacting with less massive galaxy groups, as evidenced by substructure and weak density discontinuities in the ICM.
- However, no clear evidence of interaction between the two main subclusters.
- **Likely scenario:** MACS J0416.1-2403 is a place of active cosmic structure growth. We are witnessing a pre-merging system.

Surface Brightness Modeling

Fig. 2: Zoom-in on the N cluster core. A "cavity"-like feature is seen NW of the core.

Surface Brightness Modeling

Subtract the **stowed** background profile from the surface brightness profile across the "cavity".

Bin the net profile to have at least 1 count/bin.

Use **Cash statistics** for the fits, rather than chi-squared statistics.

Fit various underlying density models to the data, assuming that the plasma is isothermal.

Keeping the sky background fixed to its best-fitting value, fit the inner part of the profile.

Fig. 2: Zoom-in on the N cluster core. A "cavity"-like feature is seen NW of the core.

Fig. 2: Zoom-in on the N cluster core. A "cavity"-like feature is seen NW of the core.

Fig. 2: Zoom-in on the N cluster core. A "cavity"-like feature is seen NW of the core.

Fig. 2: Zoom-in on the N cluster core. A "cavity"-like feature is seen NW of the core.

Spectroscopic Analysis

From the total spectrum of a partial annulus, subtract the stowed background spectrum from the same region.

Bin the spectra to have at least 1 count/bin.

Use **Cash statistics** for the fits, rather than chi-squared statistics.

Keeping the sky background model fixed, fit the net source spectra with single-temperature APEC models.

