### Using Chandra X-ray Observation to Characterize Planck Clusters

Christine Jones, F. Andrade-Santos, W. Forman, S. Murray

for the Chandra-Planck Collaboration

SZ surveys can provide "clean" cluster samples, close to an unbiased mass-limited selection.

Although the SZ effect is redshift independent, detection limit depends on instrument angular resolution.

Planck provides a statistically representative sample of massive clusters over the full sky (|b|>15 deg)

165 z<0.35 clusters Chandra observations with 10,000 source counts



Lx vs z for Planck ESZ clusters



The most X-ray luminous (z<0.35) Planck detected clusters (> 3 X 10<sup>45</sup> ergs/s)

Now characterizing each cluster through Lx, kT, gas mass, total mass, gas mass fraction, entropy, central cooling time, and cluster morphology.

Determine low-z cluster mass functions and accurate scaling relations between cluster mass and mass proxies (e.g. gas mass, kT, Lx) and the integrated Compton Y parameter required for future large X-ray (e.g. SXG/eROSITA) and SZ surveys.

### **Basic Cluster Morphologies**

"single" relaxed cluster vs "disturbed" merging clusters



### Single "relaxed clusters "

G266.84+25.07 z=0.254 bl4

G295.33+23.33 z=0.119 bl16

cool core cluster kT lower in cluster core high central gas density short central gas cooling time low entropy

Not cool core

### Single relaxed "cool core" clusters



Cool core cluster- no clear cavities

Cool core cluster with cavities

### Gas sloshing in "cool core" clusters



Cool core cluster - gas sloshing

Cool core cluster with sloshing/ cavities

### Merging clusters



Are cluster morphologies different in low redshift SZ, X-ray and optically selected samples?

SZ - Planck detected

X-rays - ROSAT HIFLUGCS (Reiprich & Bohringer 2002, Ikebe+ 2002, Zhang+ 2011), B55 (Edge+ 1990), BCS and MACS (Ebeling+),

Optical - Abell catalog - Einstein X-ray observations (Jones & Forman 1999)

# Cluster morphologies in low redshift SZ, X-ray and optically selected samples

|             | Planck cluster sample<br>(165 clusters) |               | X-ray HIFLUGCS<br>(62 clusters) |               | Abell/Einstein<br>(198 clusters) |  |
|-------------|-----------------------------------------|---------------|---------------------------------|---------------|----------------------------------|--|
| "relaxed"   | 44%                                     | (73 clusters) | 66%                             | (41 clusters) | 61% (127)                        |  |
| "disturbed" | 56%                                     | (92 clusters) | 34%                             | (21 clusters) | 39% (81)                         |  |

BUT, Planck observed with Chandra (I" resolution), HIFLUGCS (Zhang+) with XMM (I5" resolution) and Abell with Einstein IPC (I' resolution)

Of the 165 Planck detected clusters, there are 27 where substucture would not be identified with 15" spatial resolution

### Cluster morphologies in low redshift cluster samples

| Planck clusters<br>with I" res |          | Planck clusters<br>with 15" res | X-ray HIFLUGCS Abell/Eins |                    |
|--------------------------------|----------|---------------------------------|---------------------------|--------------------|
| "relaxed"                      | 44% (73) | 61% (100)                       | 66% (4I)                  | 61% (127 clusters) |
| "disturbed"                    | 56% (92) | 39% (65)                        | 34% (21)                  | 39% (81 clusters)  |

In Chandra Planck sample, 27 disturbed clusters have mergers in their cores. Most not identified with XMM (none through Einstein/IPC!) Without Chandra's resolution, 60% "relaxed" 40% disturbed clusters in Planck sample.

While Planck has many merging clusters, SZ selected cluster samples are not significantly different in the percentage of disturbed cluster compared to X-ray (or optical) cluster catalogs

### Clusters with Cool Cores

In X-ray samples 75 clusters from HIFLUGCS and B55 (Birzan+ 2012) 60% have cool cores

(same percentage classified as "relaxed" in HIFLUGCS by Zhang+)

Planck detected cluster sample Of relaxed clusters (44% of Planck clusters), ~40% no cool cores (28 clusters) Of total Planck sample ~70% do NOT have cool cores

Planck cluster sample has a significantly smaller percentage (~30%) of cool core clusters than X-ray selected samples.

Understandable, since clusters with centrally peaked X-ray emission more readily detected in X-ray surveys.

### Clusters with AGN produced cavities

X-ray samples 75 clusters from HIFLUGCS and B55 41% (31 clusters) have bubbles (Birzan+ 2012)

For B55 sample, Dunn & Fabian (2008) found 14 of 20 (70%) of clusters with t\_cool < 3  $10^9$  years have bubbles

Planck detected cluster sample clear bubbles in 10 clusters, candidate bubbles in 10 more clusters 14 - 28% of Planck clusters with bubbles

(due to smaller percentage of cool core clusters in Planck sample then in X-ray sample)

#### Future work with Chandra-Planck cluster sample

Rich data set

Analysis of individual interesting cluster mergers

Generation of low redshift mass function, cluster scaling relations

Investigate causes of increased entropy in cluster cores



## Thanks!