The Latest Cosmological Results from X-ray Galaxy Clusters

Adam Mantz (KICP/Chicago), Steve Allen, Glenn Morris, Robert Schmidt, Anja von der Linden, Doug Applegate, Pat Kelly, David Rapetti, David Burke, Pat Burchat, Harald Ebeling

15 Years of Chandra

November 20, 2014

References: 1402.6212, 1407.4516

Two cosmological tests using clusters

2. counts/growth

Cluster $f_{\rm gas}$

1. Gas mass fractions ($f_{\rm gas}$): uses a "gold" set of the most massive, dynamically relaxed clusters, for which $f_{\rm gas}$ measurements and predictions are most reliable.

Universe:

Questions:

- How much dark matter is there? (Ω_m)
- How strongly is the cosmic expansion accelerating? (aka dark energy; Ω_Λ, w)

Cluster f_{gas} : ingredients

- 1. Hydro simulations to predict the depletion factor ($f_{gas} \Omega_m / \Omega_b$) and its evolution with redshift.
 - Current state-of-the-art includes radiative cooling, star formation, and feedback.
 - We marginalize over a range $4 \times$ wider than the latest such work spans.

Cluster f_{gas} : ingredients

- 1. Hydro simulations to predict the depletion factor ($f_{gas} \Omega_m / \Omega_b$) and its evolution with redshift.
 - Current state-of-the-art includes radiative cooling, star formation, and feedback.
 - We marginalize over a range $4 \times$ wider than the latest such work spans.
- 2. $f_{\rm gas}$ measurements for the most massive, relaxed clusters.
 - Sample is identified based on X-ray morphology and a temperature cut.
 - Contains 40 clusters spanning 0.07 < z < 1.1 (3.1 Ms of Chandra).
 - Measurements in a shell (excluding the core) to minimize scatter and theoretical uncertainty.

$f_{\rm gas}\!\!:$ identifying a relaxed sample

We searched through > 20 Ms of the Chandra archive.

Relaxation was determined using automated measurements of morphological features (Peak brightness, isophote Symmetry and Alignment): the SPA method for finding relaxed clusters.

Final sample has 40 clusters with 0 < z < 1.1 and kT > 5 keV.

$f_{ m gas}$: the relaxed (SPA) sample

Cluster f_{gas} : ingredients

- 1. Hydro simulations to predict the depletion factor $(f_{\rm gas} \,\Omega_{\rm m}/\Omega_{\rm b})$ and its evolution with redshift.
 - Current state-of-the-art includes radiative cooling, star formation, and feedback.
 - \blacktriangleright We marginalize over a range $4\times$ wider than the latest such work spans.
- 2. $f_{\rm gas}$ measurements for the most massive, relaxed clusters.
 - Sample is identified based on X-ray morphology and a temperature cut.
 - Contains 40 clusters spanning 0.07 < z < 1.1 (3.1 Ms of Chandra).
 - Measurements in a shell (excluding the core) to minimize scatter and theoretical uncertainty.
- 3. Weak gravitational lensing data to calibrate X-ray mass estimates.
 - Corrects both non-thermal pressure and Chandra calibration.
 - ► Based on sub-sample of 12 relaxed clusters overlapping with WtG.

Cluster f_{gas} : ingredients

- 1. Hydro simulations to predict the depletion factor $(f_{\rm gas} \,\Omega_{\rm m}/\Omega_{\rm b})$ and its evolution with redshift.
 - Current state-of-the-art includes radiative cooling, star formation, and feedback.
 - \blacktriangleright We marginalize over a range $4\times$ wider than the latest such work spans.
- 2. $f_{\rm gas}$ measurements for the most massive, relaxed clusters.
 - Sample is identified based on X-ray morphology and a temperature cut.
 - Contains 40 clusters spanning 0.07 < z < 1.1 (3.1 Ms of Chandra).
 - Measurements in a shell (excluding the core) to minimize scatter and theoretical uncertainty.
- 3. Weak gravitational lensing data to calibrate X-ray mass estimates.
 - Corrects both non-thermal pressure and Chandra calibration.
 - Based on sub-sample of 12 relaxed clusters overlapping with WtG.
- 4. External priors on h and $\Omega_{\rm b}h^2$ (i.e. on $\Omega_{\rm b}$).
 - \blacktriangleright Allows us to focus on constraining Ω_m and dark energy.

Growth of Structure

2. Abundance/growth: uses the statistical properties of the population.

Questions:

- How inhomogeneous is the universe? (σ₈)
- How much dark matter is there? (Ω_m)
- How massive are neutrinos? (Ω_{ν})
- How much dark energy is there, and is it a cosmological constant? (Ω_Λ, w)
- Should we modify General Relativity instead?
- What drove inflation?

(Image from Cole 2005)

Growth of Structure: ingredients

- 1. Predicted mass function of halos (number density as a function of redshift, mass).
 - Approximately universal form allows a range of cosmologies to be explored.
 - ▶ Residual uncertainties estimated at the 10% level currently.

Growth of Structure: ingredients

- 1. Predicted mass function of halos (number density as a function of redshift, mass).
 - Approximately universal form allows a range of cosmologies to be explored.
 - ▶ Residual uncertainties estimated at the 10% level currently.
- 2. Cluster sample: 3 catalogs (BCS/REFLEX/MACS) from the RASS.
 - Clean X-ray selection.
 - Complete spectroscopic redshifts.
 - \blacktriangleright Selects the most massive clusters out to $z\sim 0.5$ (5 Gyr of evolution).

Growth of Structure: ingredients

- 1. Predicted mass function of halos (number density as a function of redshift, mass).
 - Approximately universal form allows a range of cosmologies to be explored.
 - ▶ Residual uncertainties estimated at the 10% level currently.
- 2. Cluster sample: 3 catalogs (BCS/REFLEX/MACS) from the RASS.
 - Clean X-ray selection.
 - Complete spectroscopic redshifts.
 - $\blacktriangleright\,$ Selects the most massive clusters out to $z\sim 0.5$ (5 Gyr of evolution).
- 3. Mass estimates to empirically constrain scaling relations between mass and X-ray luminosity (or the SZ effect, or richness...).
 - \blacktriangleright Additional mass proxies (e.g. ICM temperature, $M_{\rm gas})$ also useful.
 - \blacktriangleright We use Chandra/PSPC data for ~ 90 clusters and weak lensing for 50.

Quick aside

- 1. To achieve useful precision, the $f_{\rm gas}$ test needs X-ray data.
- Counts/growth experiments are not intrinsically wavelength-specific, but X-ray mass proxies (at minimum) are invaluable (e.g. Benson/SPT talk).
- Optical/NIR gravitational lensing data now plays a critical role in both, providing unbiased total mass estimates. (See Weighing the Giants papers by von der Linden, Kelly, Applegate 2014)

Latest constraints:

$$\begin{aligned} \Omega_{\rm m} &= 0.26 \pm 0.03 \\ \sigma_8 &= 0.83 \pm 0.04 \\ \sigma_8 \left(\frac{\Omega_{\rm m}}{0.26}\right)^{0.17} &= 0.83 \pm 0.03 \end{aligned}$$

Both these parameters limited by the mass calibration (lensing).

Note: growth and $f_{\rm gas}$ both constrain $\Omega_{\rm m}$, $f_{\rm gas}$ slightly more. σ_8 comes only from the counts/growth. Cluster constraints on these are essentially model independent.

Improvements in mass estimation and analysis:

2008: Relatively crude analysis, hydrostatic masses used regardless of dynamical state.

2010: Complete analysis, inclusion of $f_{\rm gas}$ data and low-scatter mass proxies.

2014: WtG lensing mass calibration.

Note: growth and $f_{\rm gas}$ both constrain $\Omega_{\rm m}$, $f_{\rm gas}$ slightly more. σ_8 comes only from the counts/growth. Cluster constraints on these are essentially model independent.

Even with lensing, X-ray mass proxies (kT, $M_{\rm gas}$) boost our constraining power noticeably.

Note: growth and f_{gas} both constrain Ω_{m} , f_{gas} slightly more. σ_8 comes only from the counts/growth. Cluster constraints on these are essentially model independent.

(CMB constraints assume flat Λ CDM, minimal neutrino mass)

Note: growth and $f_{\rm gas}$ both constrain $\Omega_{\rm m}$, $f_{\rm gas}$ slightly more. σ_8 comes only from the counts/growth. Cluster constraints on these are essentially model independent.

$f_{ m gas}$ + growth: constraints on neutrino mass

Cosmological currently data provide the tightest constraints on $\sum m_{\nu}$, but require an accurate measurement of σ_8 .

Clusters+SN+BAO+ACT+SPT +Planck+WP: $\sum m_{\nu} < 0.22 \text{ eV}$ +WMAP: $\sum m_{\nu} < 0.33 \text{ eV}$

No cosmological signal for non-minimal neutrino mass (yet)! (Laboratory limit is $\lesssim 6 \,\text{eV.}$)

$f_{\rm gas}$ + growth: constraints on dark energy

Clusters:

- $\Omega_{\rm m} = 0.261 \pm 0.031$
- $\sigma_8 = 0.831 \pm 0.036$
- $w = -0.98 \pm 0.15$

CMB: WMAP, ACT, SPT SNIa: Union 2.1 BAO: 6df, SDSS, BOSS

Note: growth and f_{gas} both constrain Ω_m and w. f_{gas} dominates the Ω_m constraint, and growth dominates w.

$f_{ m gas}$ + growth: constraints on dark energy

non-flat $\Lambda \mathsf{CDM}$ models:

Clusters:

$$\Omega_m \ = \ 0.261 \pm 0.032$$

$$\sigma_8 = 0.830 \pm 0.035$$

$$\Omega_{\Lambda} = 0.728 \pm 0.115$$

CMB: WMAP, ACT, SPT SNIa: Union 2.1 BAO: 6df, SDSS, BOSS

Note: growth and $f_{\rm gas}$ both constrain $\Omega_{\rm m}$ and Ω_{Λ} . $f_{\rm gas}$ dominates the $\Omega_{\rm m}$ constraint, and growth dominates Ω_{Λ} .

Combined constraints on evolving dark energy

Clusters+CMB+SN+BAO: $w_0 = -0.93 \pm 0.22$ $w_a = -0.4 \pm 1.1$

(consistent with a cosmological constant and spatial flatness)

$f_{\rm gas}$ + growth: constraints on gravity

"Growth index" as a consistency test of GR: $\frac{d\delta}{da} = \frac{\delta}{a}\Omega_{\rm m}(a)^{\gamma}$ Clusters + CMB: $\gamma = 0.52 \pm 0.14$, $w = -0.94 \pm 0.13$

Coming soon: constraints on f(R) models from Cataneo et al.

Summary

- Cluster f_{gas} and growth provide tight constraints on Ω_m, σ₈ and dark energy parameters – arguably the tightest of any single probe.
- Ongoing and planned surveys will capitalize on the extensively studied, massive, low-z clusters used here to provide even tighter constraints and test a wider range of models.

