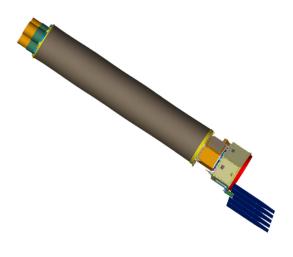
Probing the Accretion Geometry of Black Holes with X-ray Polarization

Jeremy Schnittman

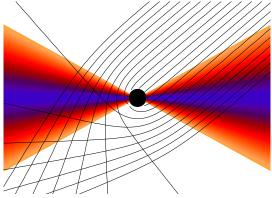
Johns Hopkins University

Chandra Fellows Symposium October 17, 2008


(past) Future Work

- Integrated model will be useful to
 - probe plunging region
 - estimate coronal properties
 - predict polarization signatures
 - compute line emissivity scaling functions
- 3-D numerical MHD simulations
 - develop realistic heating, cooling functions
 - measure effects of corona/jet structure
 - study plunging region
 - calculate time-dependent spectra

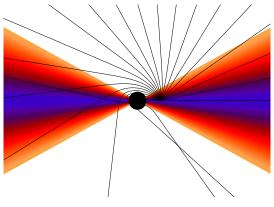
GEMS: Gravity and Extreme Magnetism SMEX



- Approved for "phase A" funding in recent round of SMEX proposals, to launch in 2012
- Sensitive down to $\lesssim 1\%$ at 1 milliCrab (10^6 s exposure)
- Energy bandwidth of 2-10 keV

Observer-to-Emitter

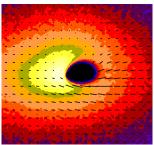
The "traditional" paradigm traces photons along geodesic paths from a distant observer to the disk


cf. Schnittman, Krolik, & Hawley (2006)

Noble et al. (2007)

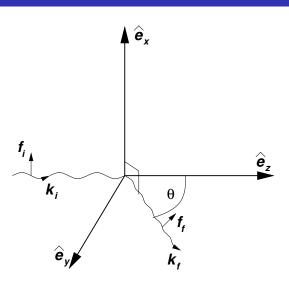
Emitter-to-Observer

To include scattering effects and return radiation, we trace the photon paths from the emission region to the observer



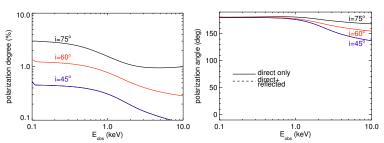
Transport of polarization vectors

- Polarization vector is space-like and normal to wave vector: $\mathbf{f} \cdot \mathbf{k} = 0$ and $\mathbf{f} \cdot \mathbf{f} = 1$.
- Walker-Penrose constant of motion κ_{PW} , conserved along null geodesics, gives remaining components of \mathbf{f} . (Connors et al. 1980)
- Emission from scattering-dominated atmosphere is polarized parallel to disk surface. (Chandrasekhar 1960)


The thermal seed photons come from a relativistic thin disk

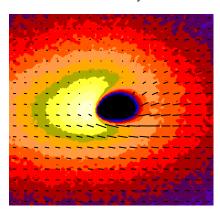
- disk parameters:
 - BH mass M
 - BH spin a/M
 - accretion rate $\dot{M}/\dot{M}_{\rm Edd}$
 - emissivity (Novikov-Thorne vs. power-law to horizon)
- corona parameters:
 - temperature, density profile $T_c(r)$, $\rho_c(r)$
 - ullet optical depth to Compton scattering $au_{
 m es}$

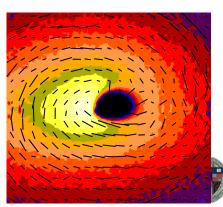
Thompson scattering of polarized photons


- $\mathbf{f}_i \cdot \mathbf{k}_i = 0$
- $\mathbf{f}_f \cdot \mathbf{k}_f = 0$
- $(\mathbf{f}_i \times \mathbf{k}_f) \cdot \mathbf{f}_f = 0$
- $\delta = (X^2 + Y^2)^{1/2}$
- $\bullet \ \psi = \frac{1}{2} \tan^{-1}(Y/X)$

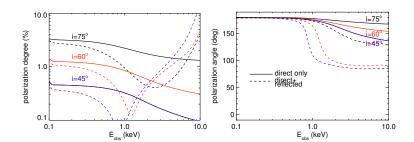
Plane polarization from a thermal disk is rotated by relativisite beaming and lensing

$$a/M=0.9$$
, $R_{\rm in}=R_{\rm ISCO}$, N-T emission, $L=0.1L_{\rm Edd}$

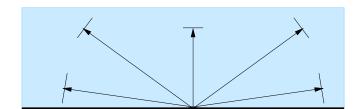

(cf. Connors, Stark, & Piran 1980)

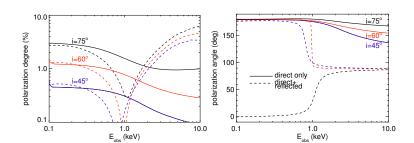


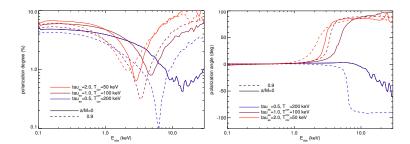
Return radiation near the BH changes the polarization signature significantly


direct only

direct+return


Return radiation near the BH changes the polarization signature significantly


Scattering through optically thin corona rotates net polarization angle


Corona scattering preferentially changes polarization angle of high-energy photons

Polarization as probe of coronal properties

Applications/Future Work

- New polarization measurements will allow us to
 - probe plunging region
 - estimate coronal properties
 - infer emissivity profiles
 - measure BH spin
- Fitting observations
 - Green's function-type transfer
 - fold through *GEMS* response function
- 3-D numerical MHD simulations (Noble, Krolik, & Hawley 2008)
 - develop realistic heating, cooling functions
 - define electron temperature everywhere
 - self-consistently calculate inverse-Compton spectrum and polarization

