Iron Lines in Neutron Star Low-Mass X-ray Binaries

Ed Cackett

University of Michigan ecackett@umich.edu Chandra Fellows Symposium 2008

Jon Miller, Didier Barret, Sudip Bhattacharyya, Josh Grindlay, Jeroen Homan, Cole Miller, Michiel van der Klis, Tod Strohmayer, Rudy Wijnands

Iron lines in black hole systems

- Broad, asymmetric, Fe K emission lines seen in both AGN and BH X-ray binaries
- Line skewed by Doppler shifts and gravitational redshift thus sensitive to inner disk radius
- Evidence for BH spin

 $EW = 320 \pm 45 \text{ eV}$ Miniutti et al. (2007) $EW = 600 \pm 150 eV$ Miller et al. (2004)

Iron lines in neutron star systems

- Iron lines known in many NS X-ray binaries (e.g. White et al. 1985, Asai et al. 2000)
- Significantly weaker than in BHs, but can we use the same diagnostics of the inner disk in NSs?
- Continuum spectroscopy is tough as models are degenerate (e.g. Lin, Remillard & Homan 2007)

Neutron star equation of state

- Nature of ultra-dense matter in neutron star cores still uncertain
- We need accurate measures of neutron star radius and/or mass to discriminate

Suzaku Observations

 Broadband energy coverage and ability to observe high count rates efficiently - excellent for observing iron lines in NSs

Serpens X-I

- Broad, asymmetric line revealed
- Well fit by a disk line model
- $R_{in} = 7.7 \pm 0.5 R_G$ (where $R_G = GM/c^2$)
- Corresponds to 15.9 \pm 1.0 km for 1.4 M $_{\odot}$ NS
- Line also seen with XMM by Bhattacharyya & Strohmayer (2007)

Robustness of line profile

Ratio

diskbb*comptt

Disk and Compt.

5

6

Energy (keV)

8

9

Compilation of NS iron lines

4U 1636-523: Pandel+ (2008)

- R_{in}: 6.7 8.8 GM/c² from these objects (4U 1636 may be larger)
- I3.8 I8.1 km assuming I.4 M_☉

Equation of state constraints from iron lines

- Observations do not rule out any EoS
- Need some extra info.....
- Can combine with Quasi-Periodic
 Oscillations (QPOs)

Getting NS mass using kHz QPOs

- If upper kHz QPO is orbital frequency then v ~ (GM/R³)^{1/2}
- We get velocity in disk from iron lines:
 v = (GM/R)^{1/2}
- Combining both we can measure NS mass: $M = v^3 / 2\pi G v$

Cyg X-2: kHz QPOs and iron lines

- Need simultaneous observations to test this
- Cyg X-2 has known mass: 1.78 ± 0.23 M⊙ (Orozs & Kuulkers 1999)
- I00 ks Suzaku observation with some simultaneous RXTE coverage unfortunately, no kHz QPOs
- But, using lit. value for upper kHz QPO get: I.3 ± 0.2 M⊙

 $R_{in} = 8.6 \pm 0.7 \text{ GM/c}^2$

Comparison with black holes

- NS lines narrower than the most extreme BH lines - in NS, R_{in} is greater than ISCO for Schwarzschild metric
- Doesn't contradict use of BH lines for measuring spin

Conclusions

- Broad, asymmetric iron lines seen in 7 neutron star X-ray binaries - every system observed by Suzaku or sensitive XMM observations
- Inner disk radius measured
 - upper limit on NS radius
 - disk extends almost to NS surface (boundary layer small)
- Test for kHz QPO origin and method for measuring NS mass
- Can we follow the evolution of the disk as NS change state using iron lines?