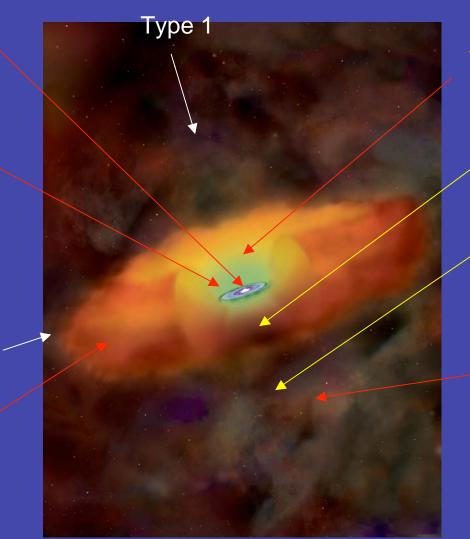
Chandra's Role in the Changing Face of AGN

Nuclear region of an AGN/Quasar

- View of Active Galaxy (AGN) depends on inclination
- Optical/UV light: obscured when edge-on
- Traditional surveys: optical/UV, soft X-ray
- Hard X-ray/IR/radio surveys see all


Unification Model: nuclear regions

X-ray source

Accretion Disk: OUV +soft X-ray emission

Type 2

Dusty material: near+mid IR emission

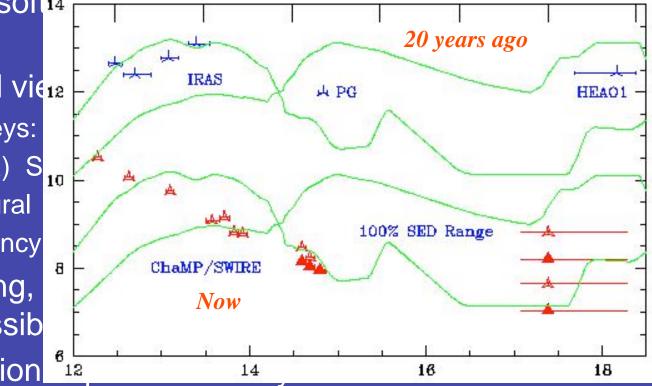
X-ray reflection off cold/warm material

BROAD LINE REGION NARROW LINE REGION


Scattered, polarized light

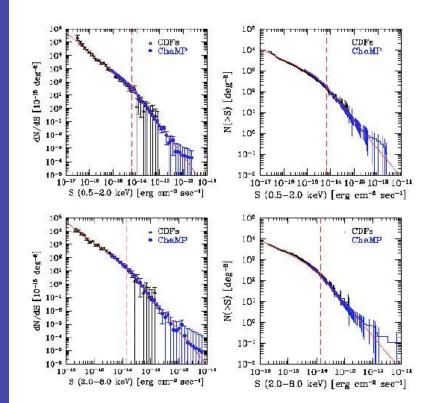
AGN Type and Obscuration

Urry & Padovani


- X-ray surveys generally find:
 - Type 1 AGN unobscured
 - Type 2 AGN obscured
 - Consistent with simple Unification models
- But MANY exceptions:
 - Red AGN
 - Intermediate types
 - BALs
 - XBONGs
- Disk-wind models (Konigl & Kartje 1994)

To View the Population

- Optical and soft quasars
- An unbiased vien
 - X-ray surveys:
 - Infrared (IR) S
 - Γ-ray: Integral
 - Low-frequency
- Many ongoing, range of possib
- Can Unification

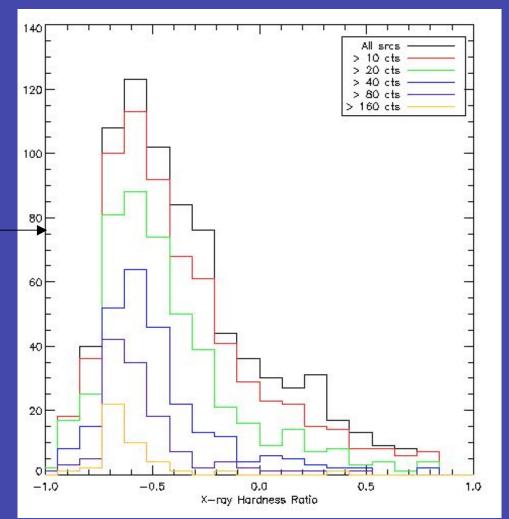


X-ray logN vs logS

(M. Kim et al., 2006)

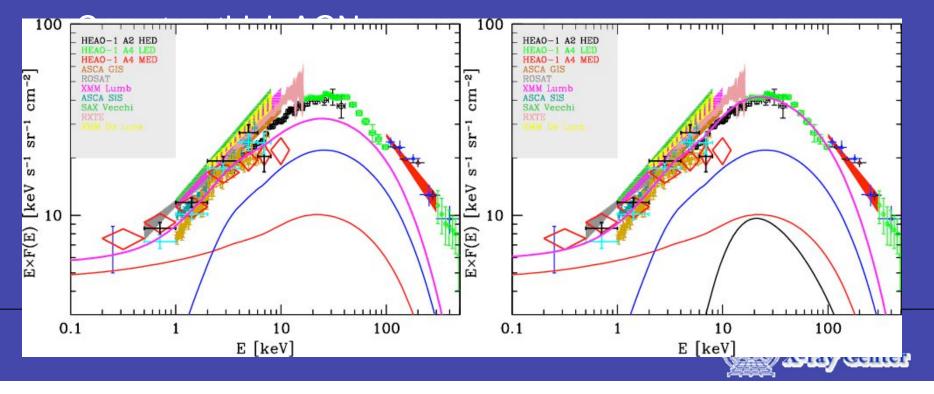
- Chandra Multi-wavelength Project (ChaMP): Serendipitous X-ray Survey
- 5500 sources, 9.6 sq.degs., F>6x10⁻¹⁶ (cgs)
- Strongest constraints to date
- Combined w/CDFs, even better:
 - <u>Soft:</u> 1.49±.02 (faint);
 2.36±.05(bright)
 - <u>Hard:</u> 1.58±.01 (faint)
 2.59±.06 (bright)

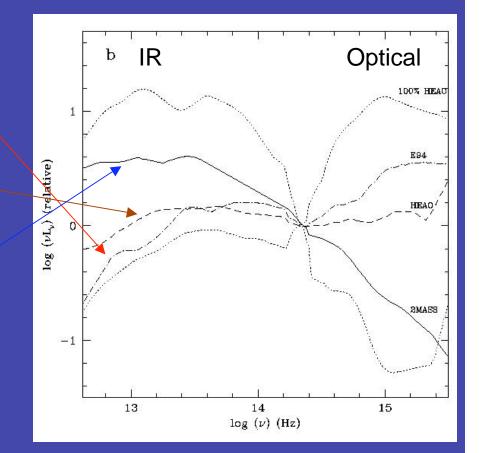
Resolution of the Cosmic X-ray Background


- ChaMP+CDFs sample (M.Kim et al. 2006)
 - Resolved fraction:
 - 78% (0.3-2.5keV)
 - 81% (2.5-8keV)
- Diffuse Background: 20% (2-8keV)
 Hickox & Markevitch 2006
- Galaxies dominate:

F_x(.5-2keV) <2x10⁻¹⁸(cgs) D.Kim et al. 2006, ChaMP

X-ray Surveys are finding Obscured Sources


- Fainter sources are harder
- Hardness: primarily due to obscuration (*Kim et al. 2004, ChaMP*)
- SWIRE/Chandra sample (Wilkes, Kilgard et al. in prep)
- Steep increase \rightarrow L dependence of N_H (Comastri 2004)


Current CXRB Models Gilli, Comastri & Hasinger 2007

- R = obsc'd/unobs'd AGN
 - ~ 4 , log L_x <42
 - ~ 1 , log L_x >45
- Γ = 1.9, σ_x=0.2
- ~ 20% unresolved CXRB

Current X-ray and IR Surveys \rightarrow Broader range of SEDs

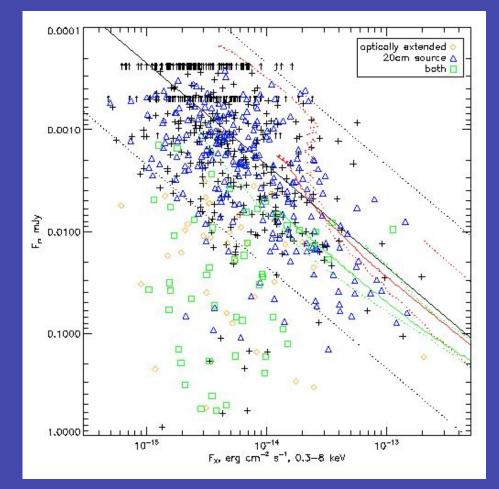
- Einstein-era: optically/radio-selected, blue bias (Elvis et al. 1994)
- HEAO: hard X-ray, reduces blue bias (Kuraskiewicz et al. 2003)
- 2MASS: J-K>2, red AGN, little/no blue bump (Kuraskiewicz et al. 2007, Fig 4b)

- Potential:
 - Numbers: geometry of central regions
 - Properties: information on obscuring material
- No single population (Alexander et al. 2003, Rosati et al. 2002):
 - Type 2 AGN/QSOs (Norman et al 2002, Kim et al. 2006)
 - Compton-thick AGN (Polletta et al. 2006)
 - XBONGS (Fiore et al. 2000, Kim et al. 2006)
 - Obscured type 1 AGN (Wilkes et al 2002)
 - Optically Highly Polarized Type 1 AGN (Smith et al. 2002)
- Unbiased Survey?
 - X-ray + far-IR
 - 3CR, low frequency radio selected

SWIRE/Chandra Survey

(w/Lonsdale, Kilgard, Polletta, Smith, Owen, et al.)

- 0.6 sq.degs. contiguous, 70 ksecs
- Lockman Hole region of SWIRE
- Centered on Deepest VLA image
- X-ray flux limit: 2x10⁻¹⁶ erg cm⁻² s⁻¹
- Depth: distinction between AGN and starbursts (undetected)

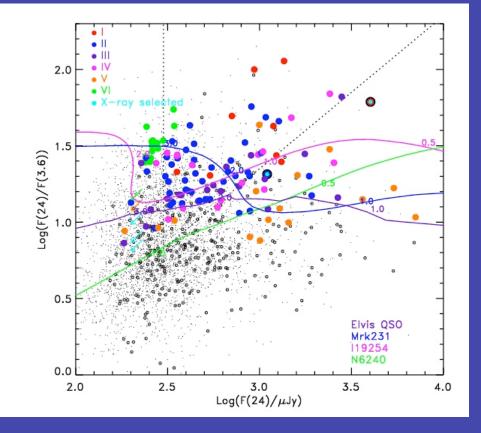


Statistical Results

- 775 unique X-ray sources to a limiting flux of 2x10⁻¹⁶ erg cm⁻² s⁻¹
 - 765 with secure IR counterparts and 626 secure optical counterparts
 - >160 radio counterparts (analysis on-going)
 - 75 spec z (so far)
 - 49 X-ray sources coincident with optically extended galaxies
 - 2 extended X-ray sources (clusters)

SWIRE X-ray Sample

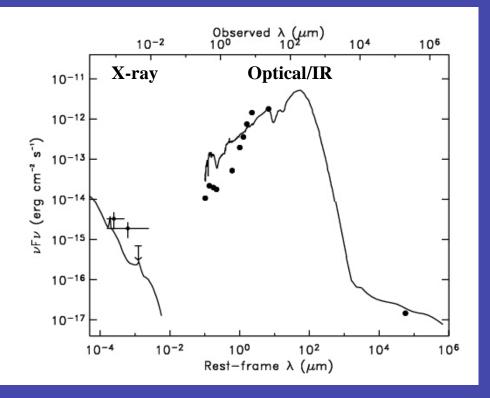
- Standard R vs X plot
- Blue lines indicate AGN region (not welldefined)
- Radio sources all over
- Extended sources in low L AGN region



Compton-thick AGN

(Polletta et al. 2006)

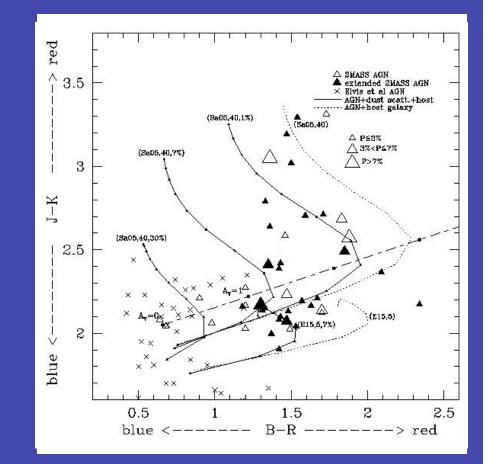
- 5 hard X-ray selected (2 at z>2)
- 120 red, AGN-dominated, IR-selected: power-law SED, α_{IR} >1.0
- >25 Compton-thick AGN per sq.deg.
- 40% optical O/IR AGN, remainder host galaxy dominates
- 30% X-ray detected to F(.3-8)~10⁻¹⁵ (cgs)



SWIRE: X-ray Compton-Thick QSO

(Polletta et al. 2006)

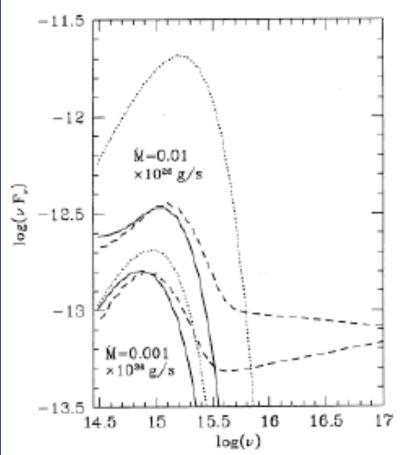
- SW 104409, z=2.54
- X-ray HR~0.85, 11 counts
- NLSy1 optical spectrum
- SED:
 - Obscured QSO, $A_V=4$
 - 0.6% QSO type 1



Unusual OIR Colors: Red 2MASS

(w/ Kuraskiewicz, Cutri, Schmidt, Smith, Nelson)

- Not pure obscured AGN
- Explained by:
 - "Normal" AGN
 - Obscuration (by dust)
 - Host galaxy
 - Scattered AGN
- Any systematics?

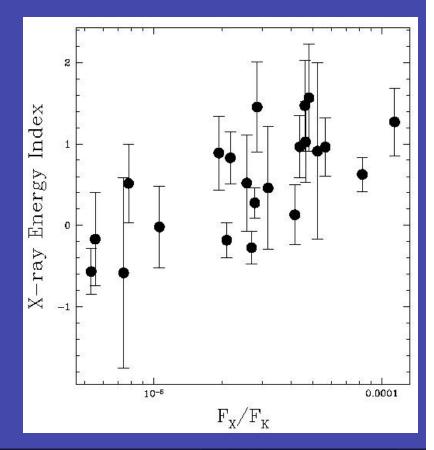

IR-X continuum and emission line

Kuraskiewicz et al 2007

PCA

Czerny et al 1997

- EV1 (33%):
 - X-ray to OIR flux ratios
 - \rightarrow accretion rate
- EV2 (18%):
 - OIR colors
 - Host Galaxy contribution $(+A_V)$
- EV3 (12%):
 - X-ray N_H and optical NL reddening
- EV4 (8%):
 - Polarized light + broad $H\alpha/H\beta$
 - Dust between BLR and NLR



Complex X-ray Spectra

- 44 2MASS Red AGN w/Chandra
- 21 spectra fits:
 - $-\log N_{H}$ ~22
 - PL slope flatter for weaker X-rays

Chandra data: Wilkes et al., in prep

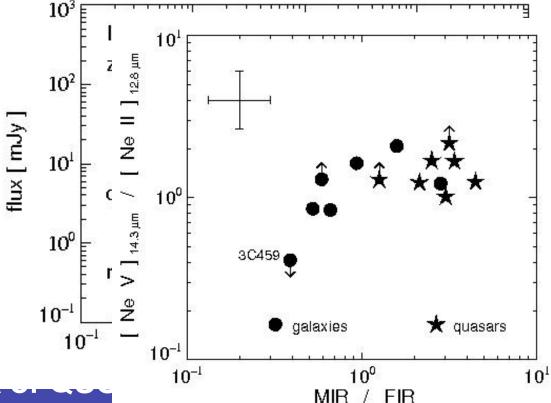
Complex X-ray Spectra

- XMM-Newton: 8 X-ray bright 2MASS AGN
- Range of optical types and Chandra HRs
- Variety of properties:
 - Type 2: log N_H ~22, normal spectral index
 - Type 1-1.5: absorbed PL, reflection, soft excess
 - No systematic errors in Chandra results but low S/N data misleading
 - Harder X-ray likely due to reflection

XMM-Newton Observations

(Wilkes, Pounds et al. 2005, 2007)

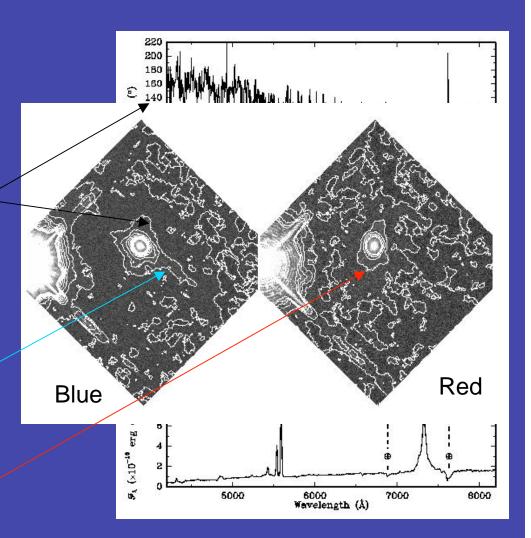
8 X-ray-bright, 2MASS ΔΩΝΙ· 0 - Range of optical types a • Variety of results: Complexity in type 1 and Variation in 3 (1 of each
 No systemation 0-5 BUT low S/N data are m 0.5 2 5 observed energy (keV) Harder X-ray: due to N_H



3CR: Infrared SEDs

Haas et al. 2004, 2005

- X-rays: miss highly
- Isotropic: Low-freq.
- Mid-IR SEDs differ
- Emission lines → A
 Galaxies obscured
- Multi-wavelength
 - 3CRs, 1<z<2, peak of
 - Spitzer, Chandra, Herscher OTKP (+ existing data)
 - Well-observed, bright, unbiased sample

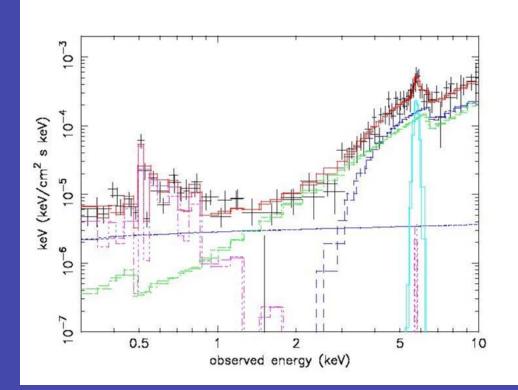


A Particularly Complex Source: 2M1049+5837

Schmidt et al 2007

- Optical Type: 1.8
- X-ray hard (HR=0.6)
- 2 scattering regions:
 - Blue: thin, small dust grains
 - Red: dusty region, red due to obscuration
 - Starlight dilution
- HST imaging:
 - Blue fan
 - Red fringe (polar)

2M1049+5837 (Schmidt et al 2007)


- Suggest it is unusually dusty
- Dusty AGN rarely remain type 2 even when edge-on, due to scattered light
- X-rays confirm it is unusual

XMM-Newton Data

Wilkes, Pounds, Schmidt, in prep.

- Unusually hard 2-10 keV spectrum
- Requires:
 - Compton-thick PL
 - Unabsorbed Cold Reflection
 - Soft excess: warm ionized region
 - Scattered power law ~1.7%

Testing AGN Unification

- Can all differences be explained in terms of orientation? No
- What are other dependencies: L, M?
- What is the role of dust, mergers and/or star-formation?
- Do we require any fundamental differences to understand the new AGN?
 not yet!

