Baby beams and jumbo jets:

investigating the relation between microqusars and AGNs

at Max-Planck-Institute for Astrophysics

Similar morphologies

Flat nuclear spectra

AGNs are more radio loud than microquasars

Opt. thin jets: $T_{\rm b} \propto \dot{M}^{-0.76}$ $L_{\rm r} \propto \dot{M}^{1.24}$

Flat core emission:

 $L_{
m r} \propto \dot{M}^{1.45}$

Accretion rate correlation

Black holes in Galactic X-ray binaries:

 X-ray radio correlation in low/hard state

$$F_{
m radio} \propto F_{
m x-ray}^{0.7}$$

Comparing AGNs and microquasars

motivation:

- jets \leftrightarrow accretion
- jets from compact objects are relativistic
- morphologies: AGN & microquasars very similar
- spectra: AGN & microquasars very similar
- flat spectrum core emission: no messy ISM-interactions

questions:

- what produces radio loudness differences?
- are jets really similar at heart?
- **disentangle** dependence of flux on different parameters $(M_{\text{BH}}, m, 9_{\text{LOS}}, a)$

The scale invariance Ansatz

parameters governing inner disk:

- black hole mass M
- accretion rate $\dot{m} = \dot{M} / \dot{M}_{Edd}$

(black hole spin *a* ?)

Jet launched in the inner disk

 \Rightarrow inner jet goverened by: *M*, \dot{m}

(black hole spin *a* ?)

The scale invariance Ansatz

 $=\phi_f(M, \dot{m}) \psi_f(X, a)$

Synchrotron emission from the core:

Scaling of core radio flux with mass:

$$\frac{\partial \ln(F_{\nu})}{\partial \ln(M)} = \frac{2p+13+2\alpha}{p+4} + \frac{\partial \ln(\phi_B)}{\partial \ln(M)} \left| \frac{2p+3+\alpha p+2\alpha}{p+4} \right| + \frac{\partial \ln(\phi_C)}{\partial \ln(M)} \left| \frac{5+2\alpha}{p+4} \right| \equiv \xi_M$$

$$\implies F_{\nu} \propto M^{\xi_M}$$

NOTE: al model dependence absorbed into observables α and p

radio-mass dependence

$$F_{\nu} \propto M^{\xi_{M}}$$

disk mode:	B^2	$\boldsymbol{\xi}_{\scriptscriptstyle M}$	
ADAF	$\frac{\dot{m}}{M}$	$\frac{17}{12} - \frac{\alpha}{3}$	$\sim 1.42 - 0.33 \alpha$
rad. press.	M^{-1}	$\frac{17}{12} - \frac{\alpha}{3}$	$\sim 1.42 - 0.33 \alpha$
gas press.	$\dot{m}^{\frac{17}{20}}M^{-\frac{9}{10}}$	$\frac{187 - 32\alpha}{120}$	$\sim 1.56 - 0.27 \alpha$
$W_{jet} \propto W_{disk}$	$\frac{\dot{m}}{M}$	$\frac{17}{12} - \frac{\alpha}{3}$	$\sim 1.42 - 0.33 \alpha$

AGNs are more radio loud!

 $F_{v} \sim M^{1.42 - 0.33\alpha}$

radio-accretion rate dependence

 $F_{\nu} \propto \dot{m}^{\xi_{\dot{m}}}$

disk mode:	B^2	ξ_m	
ADAF	$\frac{\dot{m}}{M}$	$\frac{17}{12} + \frac{2\alpha}{3}$	$\sim 1.42 + 0.66 \alpha$
rad. press.	M^{-1}	0	0
gas press.	$\dot{m}^{\frac{17}{20}}M^{-\frac{9}{10}}$	$\left \frac{17}{12} + \frac{2\alpha}{3}\right \frac{17}{20}$	$\sim 1.2 + 0.56 \alpha$
$W_{jet} \propto W_{disk}$	$\frac{\dot{m}}{M}$	$\frac{17}{12} + \frac{2\alpha}{3}$	$\sim 1.42 + 0.66 \alpha$

for inefficient accretion:

$$F_{\nu} \sim (\dot{m})^{1.42+0.66\alpha} \propto L_x^{0.71}$$

 $+0.34\alpha$

- past searches: no clear radio-mass correlation
- should consider: mass and accretion rate
- 2-10 keV X-ray as proxy of inner disk
- Sample: ~100 AGNs 60 XRB observations with measured masses:
- radio correlates with mass <u>AND</u> X-rays

- past searches: no clear radio-mass correlation
- should consider: mass and accretion rate
- 2-10 keV X-ray as proxy of inner disk
- Sample: ~100 AGNs 60 XRB observations with measured masses:
- radio correlates with mass <u>AND</u> X-rays

Conclusions:

• Scale invariant jets: robust scaling relations, independent of model

 $F_{\nu} \propto M^{\xi_{M}} \dot{m}^{\xi_{m}} \sim M^{1.42-0.33\alpha} \dot{m}^{1.42+0.66\alpha}$

- Measuring correlations: test accretion physics
- Observational test finds: fundamental plane of radio-mass-x-rays

 $L_r \propto M^{0.78} L_x^{0.6}$

• consistent with inefficient accretion ($L_x \propto \dot{m}^{2.3}$), marginally consistent with jet X-rays, inconsistent with efficient accretion ($L_x \propto \dot{m}$)