Combining Spectroscopy with Photometry to Probe Higher Redshift Clustering

Anna Patej Steward Observatory, University of Arizona

Einstein Fellows Symposium October 18-19, 2016 Harvard-Smithsonian Center for Astrophysics

Contents

- Quantifying the stochasticity of large-scale structure
- Future prospects for galaxy redshift surveys
- Probing higher redshift clustering

Galaxy Redshift Surveys

- Galaxy redshift surveys use observed galaxy distribution to probe large-scale structure
- Surveys target specific populations of galaxies
- Key Question: to what extent does the observed population trace the underlying matter distribution?

Galaxy Redshift Surveys

- Survey galaxy targets include:
 - SDSS-III BOSS: LRGs, CMASS
 - DESI (future): LRGs, ELGs
- Do massive red and blue galaxies in BOSS/CMASS trace the same large-scale structure on intermediate scales (20<R<100 Mpc/h)?

Large-Scale Structure Formalism

• Simplest model:

Density Field:

$$\delta(\mathbf{x}) = \frac{\rho(\mathbf{x})}{\bar{\rho}} - 1 \longrightarrow \begin{cases} \delta_r(\mathbf{x}) = b_r \delta(\mathbf{x}) & \text{Red} \\ \delta_b(\mathbf{x}) = b_b \delta(\mathbf{x}) & \text{Blue} \end{cases}$$

Correlation Function:

$$\xi(\mathbf{R}) = \langle \delta(\mathbf{x}) \delta(\mathbf{x} + \mathbf{R}) \rangle$$
 -

$$\delta_b(\mathbf{x}) = b_b \delta(\mathbf{x}) \quad \text{Blue}$$
$$\xi_{bb}(\mathbf{R}) = b_b^2 \xi(\mathbf{R}) \quad \text{Blue}$$
$$\epsilon_b(\mathbf{R}) = b_b^2 \xi(\mathbf{R}) \quad \text{Blue}$$

$$\xi_{rr}(\mathbf{R}) = b_r^- \xi(\mathbf{R})$$
 Red
 $\xi_{br}(\mathbf{R}) = b_b b_r \xi(\mathbf{R})$ Cross

Correlation Coefficient:

$$r_{\xi} \equiv \frac{\xi_{br}}{\sqrt{\xi_{bb}\xi_{rr}}} = 1$$

Large-Scale Structure Formalism

• But what if bias is stochastic? Following Dekel & Lahav (1999):

Define a random bias field for g = b,r:

$$\epsilon_g(\mathbf{x}) \equiv \delta_g(\mathbf{x}) - b_g \delta(\mathbf{x})$$

Correlation Coefficient:

$$\delta_g(\mathbf{x}) = b_g \delta(\mathbf{x}) + \epsilon_g(\mathbf{x}) \longrightarrow r_{\xi} \equiv \frac{\xi_{rb}}{\sqrt{\xi_{rr}\xi_{bb}}} \neq 1$$

Data

- SDSS DR12 BOSS/ CMASS sample of galaxies between
 0.55<z<0.65
- Separate galaxies using Masters et al. (2011) color cut
 - $g-i > 2.35 \rightarrow red$: 232,759 galaxies
 - $g-i \le 2.35 \rightarrow blue:$ 61,301 galaxies

Above: Patej & Eisenstein (2016a)

Measuring r

8

Measuring r

• Also consider Xu, et al. (2010) statistic: $\omega(r_s) \equiv 4\pi \int r^2 dr W(r, r_s) \xi(r)$

Measuring r

Summary

- At the sensitivity of BOSS, we find that red and blue galaxies at *z*~0.6 do trace the same large-scale structure
 - We find 2σ lower bounds of r > 0.95 using correlation functions and r > 0.974 using the ω statistic

Future Prospects

- The Dark Energy Spectroscopic Instrument (DESI) is the next generation galaxy redshift survey, set to begin in late 2019
 - Successor to SDSS/BOSS & eBOSS
 - Spectra for ~30 million objects
 - Enable BAO measurements out to high redshift with galaxies and quasars

Above left: Image courtesy of A. Dey Above right: Alam, et al. (2016)

DESI Imaging Surveys

- Three imaging surveys (see legacysurvey.org) are currently underway to provide target selection for DESI:
 - DECam Legacy Survey (DECaLS)
 - Mosaic z-band Legacy Survey (MzLS)
 - Beijing-Arizona Sky Survey (BASS)

Image courtesy of A. Dey

Baryon Acoustic Oscillations

Above: Anderson, et al. (2012)

- BAO: relic peak in the clustering of galaxies
- Standard ruler in cosmology
- Limited by requirement of sufficiently dense
 spectroscopy

BAO in Sparse Samples

• While DESI will provide BAO measurements to *z*~1 and beyond, we may be able to get a head start with the imaging surveys...

Summary & Prospects

- Verified that massive red and blue galaxies trace the same large-scale structure at *z*~0.6 in BOSS/CMASS
- Prospects for measuring BAO using DESI & imaging surveys