Stumbling Towards Simulations of Collisionless Black Hole Accretion Flows

Kyle Parfrey

Lawrence Berkeley National Laboratory

Einstein Fellows Symposium, October 18, 2016

mm VLBI imaging of accretion flows on horizon scales

Sgr A*

Chandra

M87 jet

Hubble

$r_{\rm g} = GM/c^2$	0.05 AU	30 AU
apparent size	5 µas	2 µas

Event Horizon Telescope

Current

Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

Atacama	Pathfinder	EXperiment	(APEX)

Atacama Submillimeter Telescope Experiment (ASTE)

Combined Array for Research in Millimeter-wave Astronomy (CARMA)

Caltech Submillimeter Observatory (CSO)

Institut de Radioastronomie Millimetrique (IRAM) 30m

James Clerk Maxwell Telescope (JCMT)

The Submillimeter Array (SMA)

Now	
I.3 mm	23 µas
Soon	
0.87 mm	15 µas
Eventually?	
0.65 mm	11 µas

Future

Atacama Large Millimeter/submillimeter Array (ALMA)

South Pole Telescope

Sgr A* size measurement at 1.3mm

Doeleman+ 2008

These flows expected to be collisionless

Coulomb mean free path \gg system scales $\sim r_g$

Collisionless accretion

At low accretion rate, flow can have *low-density* structure which:

- I. Can't cool \rightarrow hot & \therefore geometrically thick
- 2. Optically thin
- 3. All collision timescales longer than accretion timescale

e⁻ & protons have different *T*, and generally non-thermal distribution

Sgr A*, M87, many low-L AGN, X-ray binaries in hard state...

+ other relativistic collisionless flows: e.g. coronae of thin discs

Standard ideal/resistive MHD assumptions don't hold

Extended fluid models for BH accretion

Add e⁻ thermodynamics, anisotropic pressure, ...

Still necessarily collisional physics

Collisionless physics: plasma kinetics

$\partial_t \boldsymbol{E} = \nabla \times \boldsymbol{B} - \boldsymbol{J}$	Maxwell's	$\nabla \cdot \boldsymbol{E} = \rho_{\rm e}$
$\partial_t \boldsymbol{B} = -\nabla \times \boldsymbol{E}$	equations	$\nabla \cdot \boldsymbol{B} = 0$
	+	

(a) Continuum dynamics

$$\frac{\partial f_{s}}{\partial t} + \boldsymbol{v}_{s} \cdot \nabla f_{s} + q_{s} \left(\boldsymbol{E} + \boldsymbol{v}_{s} \times \boldsymbol{B} \right) \cdot \frac{\partial f_{s}}{\partial \boldsymbol{p}} = 0 \qquad \text{s:electrons,}$$

Solve for distribution function f(x, p, t)—Vlasov-Maxwell system

or

(b) Particle dynamics

$$\frac{\mathrm{d}\boldsymbol{p}_i}{\mathrm{d}t} = q_i \left(\boldsymbol{E} + \boldsymbol{v}_i \times \boldsymbol{B} \right) \qquad \frac{\mathrm{d}\boldsymbol{x}_i}{\mathrm{d}t} = \boldsymbol{v}_i \qquad i = 0, \dots, N : \text{particles}$$

Solve for 6 fields: E, B + (3D momentum space or N particles)

Particle-based simulations in action

Global pulsar magnetosphere Shearing-box MRI (hybrid) 10 15 20 25 -0.20.2 - 0.050.050 0 1500 Electrons 1.0 $\langle \delta n_i \rangle_z$ 0.5 1000 1.5 z/R_{LC} $< \lambda >$ 0.0 1 500 -0.5 -1.0 0.53 2 1 4 5 1 R/R_{LC} y/H0 1500 Positrons 1.0 -0.50.5 1000 z/R_{LC} <~~> 0.0 -1500 -0.5 -1.5-1.0 2 3 1 4 1 R/R_{LC} $^{-2}_{-0.5}$ 0.5-0.50 0 0 0.5x/Hx/Hx/H

Cerutti+ 2015

Kunz+ 2016

PIC sims I. – fields

$$\partial_t \boldsymbol{D} = \nabla \times \boldsymbol{H} - \boldsymbol{J} \qquad \qquad \nabla \cdot \boldsymbol{D} = \rho_e$$
$$\partial_t \boldsymbol{B} = -\nabla \times \boldsymbol{E} \qquad \qquad \text{form} \qquad \nabla \cdot \boldsymbol{B} = 0$$

curved spacetime acts $E = \alpha D + \beta \times B$ like nonlinear material $H = \alpha B - \beta \times D$ Komissarov 2004

particles determine current density *j*, then $J = \alpha j - \rho \beta$

 α, β : known functions coming from 4-metric

PIC sims 2. – particles

Start from Hamiltonian: $H = \pi_i v^i - L$

conjugate momentum $\pi_i = p_i + qA_i$

with kinetic momentum p_i and $v^i = \frac{dx^i}{dt}$

Lagrangian
$$L = -m\alpha/\Gamma + qA_jv^j - qA_l$$

PIC sims 2. – particles

Start from Hamiltonian: $H = \pi_i v^i - L$

conjugate momentum $\pi_i = p_i + qA_i$ with kinetic momentum p_i and $v^i = \frac{dx^1}{dt}$ Lagrangian $L = -m\alpha/\Gamma + qA_iv^j - qA_t$ $\frac{\mathrm{d}x^{i}}{\mathrm{d}t} = \frac{\alpha}{m\Gamma}p^{i} - \beta^{i} \quad \text{Hamilton's equations give}$ $\frac{\mathrm{d}p_i}{\mathrm{d}t} = -m\Gamma\partial_i\alpha + p_j\partial_i\beta^j - \frac{\alpha}{2\Gamma m}\partial_i(\gamma^{lm})p_lp_m + q\left\{\alpha D_i + \epsilon_{ijk}(v^j + \beta^j)B^k\right\}$ gravitational ~ extrinsic Lorentz force acceleration curvature Parfrey & Quataert, in prep

How should you solve these things?

Ideally want symplectic integrator

preserves symplectic two-form: $s_{\mu\nu} = x_{\mu} \wedge p_{\nu}$

very good energy stability

Plasma physicists use **Boris push** for Lorentz force

not symplectic, but volume preserving: $|x_{\mu} \wedge p_{\nu}|$ is maintained

Particle integrator scheme

Requirements:

I. conserve phase-space volume, $|x \wedge p|$

2. time-symmetric

Simple test

Flat spacetime: $\alpha = 1, \beta^i = 0$

Uniform magnetic field in z-direction...

... but solve entirely in spherical coordinates

$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = -\frac{1}{2\Gamma m} \partial_i (\gamma^{lm}) p_l p_m + q \left\{ D_i + \epsilon_{ijk} v^j B^k \right\}$$

- I. Non-trivial coordinate-force term
- 2. Local orthonormal frames (for Boris pushes) vary spatially

i.e.
$$B_{\hat{r}}, \ B_{\hat{ heta}}, \ B_{\hat{ heta}}$$

Uniform **B** test

Slightly more complicated test

and raise plane of Larmor orbit off the equator

now the coord. system isn't symmetric above/below the orbital plane orbital plane z = | X

Balancing $\nabla B \& E \times B$ drifts

1.44

1.42

1.40

Lorentz Factor 82.1

1.36

1.34

Momentum \perp to orbital plane

Momentum \perp to orbital plane

Summary

- I. Many accretion flows are entirely collisionless, & parts of others
- 2. GR simulations in this regime haven't been performed
- 3. Accurate particle-in-cell simulations seem possible
- 4. Strang splitting of (a) Lorentz force in local orthonormal frame(b) symplectic solve for geodesic motion

for particle integrator looks promising.

The stumble continues...

M87 jet

Chandra

Black hole jet formation

KP, Giannios, Beloborodov 2015 $\frac{r_{\rm g}H_{\phi}}{\Phi_l/2\pi}$ 8 (b)(a)6 1.040.8 $z/r_{
m g}$ 0.6 $\mathbf{2}$ 0.40 0.2-2(d) 0.0(c)6 -0.2-0.44 $z/r_{
m g}$ -0.6 $\mathbf{2}$ -0.80 -1.0 $^{-2}$ $^6 R/r_{
m g}$ 8 12 $^6 R/r_{
m g}$ 8 0 10 $\mathbf{2}$ 12 $\mathbf{2}$ 4 0 410

PHAEDRA

FFE

New jet model: powered by small-scale magnetic field systems Prolific reconnection above disc \rightarrow heats X-ray corona?

Curved spacetime plasma kinetics

Particle-in-cell method

Constraint equations: hyperbolic-parabolic generalised Lagrange multipliers Munz+ 2000, Dedner+ 2002

- ID test code in flat spacetime
- 3+1 particle equations from Hamiltonian
- Phase-space-volume conserving particle integrator

Strang split:

Boris move (EM force) + implicit symplectic (metric terms)

galactic centre

black hole

ID pathfinder code

Example: transverse EM wave driven through plasma

6 x 16-point elements

flat spacetime

Plasmas around black holes & neutron stars

relativistic jets

artist's conception (NASA)

magnetars

pulsars

nature's most extreme & exotic environments

accretion discs

artist's conception (Interstellar)

Chandra X-ray data

Plasmas around black holes & neutron stars

nature's most extreme & exotic environments

all in **strong-field** general relativity

artist's conception (Interstellar)

 $T > 10^9 {
m K}$

 $P \sim 0.001 \text{ s}$