GMT

The GMT Consortium Large Earth Finder

Sagi Ben-Ami
Smithsonian Astrophysical Observatory

The Giant Magellan Telescope

- The GMT is one of the three next generation optical telescope.
- Segmented Gregorian design (six off axis and one on axis 8.4 m mirrors) with an effective aperture of 25.4 m diameter.
- F/8.2 with a FoV of 24'. Plate Scale of $1^{\prime \prime} \mathrm{mm}^{-1}$.
- Site: Cerro Las Campanas in Chile's Atacama desert.

The GMT Consortium Large Earth Finder

- The GMT Consortium Large Earth Finder (G-Clef) is a general purpose visible echelle spectrograph that offers precision radial velocity capabilities.

- G-Clef was chosen as the $1^{\text {st }}$ light instrument for the GMT.

G-CLEF: Science Cases

- Weighing planets in the TESS Catalogue.

Planet	a (AU)	Reflex Velocity ($\mathrm{m} / \mathrm{sec}$)				
		G2V	M0V	M2V	M4V	M6V
Jupiter (318 M ${ }_{\text {Earth }}$)	0.1	89.8	116	136	201	284
Jupiter (318MEarth)	1.0	28.4	36.7	42.9	63.6	89.9
Jupiter (318 M MEarth) $^{\text {d }}$	5.0	12.7	16.4	19.1	28.4	40.2
Neptune (17 M Earth)	0.1	4.8	6.2	7.2	10.8	15.2
Neptune (17 M Earth)	1.0	1.5	2.0	2.3	3.4	4.8
Super Earth (5 M Earth)	0.1	1.4	1.8	2.1	3.1	4.4
Super Earth ($\mathrm{M}_{\text {Earth }}$)	1.0	0.45	0.57	0.67	1.0	1.4
Earth	0.1	0.28	0.37	0.43	0.68	0.89
Earth	1.0	0.09	0.12	0.13	0.20	0.28
Mars (0.11 M ${ }_{\text {Earrb }}$)	0.1	0.03	0.04	0.05	0.07	0.09
Mars (0.11 M $\mathrm{MEarth}^{\text {) }}$	1.0	0.009	0.012	0.014	0.021	0.030

- O_{2} in the transmission spectra of exoplanets:

A-Band absorption features between 7600-7700Å.

G-CLEF: Science Cases

- Near-field cosmology: Characterization of metal poor stars - the fossils of structure formation at the earliest phase after the big bang.

- Flash Spectroscopy of SNe:

Direct measurements of CSM composition, unique properties of the progenitor.

Science Requirements

Abundance studies across the Local Group and Beyond
Detection, census of the most metal poor stars

Extended blue response High resolution

Gamma ray burst science / ISM at very high Z Studies of IGM at high Z
Constancy of $\alpha \& \mu$ over cosmological time scales

Extended red response-

Detection, census \& characterization of exoearths by PRV

Long term wavelength scale stability Very high resolution
High S/N
Instrument Changeover Speed
Detailed Chemical Composition Beyond the Local Group

Slit Length for MOS

So how do we achieve all of these ?

- A fiber-fed high dispersion spectrograph thermally stabilized deployed at a gravity invariant location.
- Pass band: 3500-9500Å

- Different resolution is achieved by feeding the spectrograph with fibers of different core diameters.

Optical Path: Fiber Run

(Scrambler)

Spectrograph F/\# converters
NS-PRV Mode Feed Through's

(Exposure Meter)

Spectrograph Optical Design

G-Clef Red Camera

- The re-designed red camera is a 7-element camera with one aspheric surface on the back surface of the $1^{\text {st }}$ lens (Glass substrate).

Passband	$5400-9520 \AA$ (Orders 65-113)
Focal Length	450 mm
Beam Diameter	250 mm
FoV	7.7°
Testable in collimated light (air-space).	Yes

Red Camera: PRV Ensquared Energy

- Center-to-center distance between fibers in pseudo-slit increased to $170 \mu \mathrm{~m}$.
- 80% Ensquared energy below $18 \mu \mathrm{~m}$ (Nyquist for STA $9 \mu \mathrm{~m}$ pixels) across the entire echellogram.

X-dispersers: VPH Gratings

- VPH Grating: A modulation in the index of refraction induced by holographic exposure of dichromatic gelatin.
- Higher efficiency than common ruled gratings.

Blue X-disperser:
A VPH-Prism.

VPH Ghosts Mitigation: Tilted Fringes

- Narcissistic Ghosts: Scattering from Gelatin-Glass interface after reflection from the detector $m=1 ; m^{\prime}=0$.
- Littrow ghost: Recombination of cross dispersed orders by the VPH $\Delta m=0$.

$$
\sin \beta^{\prime}=\frac{\Delta m \lambda}{\sigma \cos \gamma}+\sin \alpha
$$

Tilted Fringes

- By introducing a tilt to the imprinted fringes, we move the operation wavelength away from the Littrow configuration.
- The tilt should be large enough so that the ghosts are moved away from the detector.

$$
\begin{gathered}
\sin \beta_{B}=n_{2} \sin \left[\arcsin \left(\frac{\sin \alpha}{n_{2}}\right)-2 \phi\right] \\
\Delta \beta=\left|\alpha-\beta_{B}\right|
\end{gathered}
$$

Narcissistic Ghost

- The increased VPH-camera angle deflects ghost beams to higher angles.

Littrow Ghost

- Tilted fringes ensure that we no longer operate in Littrow configuration, and so the recombined rays miss the detector after recombination.

Red Arm Echellogram

- Entire Echellogram fits well onto the detector ($92.4 \times 92.2 \mathrm{~mm}$), with at least 1 mm for alignment in each direction.

Blue Arm Echellogram

- Entire Echellogram fits well onto the detector ($92.4 \times 92.2 \mathrm{~mm}$), with at least 0.5 mm for alignment in each direction.

