Measuring Spin for Stellar-Mass Black Holes

Jack Steiner MIT No-Hair Theorem

Mass: M

• Spin: a_* (J= a_* GM²/c)

Charge neutralized and unimportant

The gravity of spin

"In my entire scientific life, extending over forty-five years, the most shattering experience has been the realization that an exact solution of Einstein's equations of general relativity, discovered by the New Zealand mathematician, Roy Kerr, provides the absolutely exact representation of untold numbers of massive black holes that populate the universe. This shuddering before the beautiful, this incredible fact that a discovery motivated by a search after the beautiful in mathematics should find its exact replica in Nature, persuades me to say that beauty is that to which the human mind responds at its deepest and most profound."

- Subrahmanyan Chandrasekhar

Measuring the Inner Disk Radius

 $a_* = 0$ $R_{ISCO} = 6M G/c^2$ (90 km) a_∗ = 1 R_{ISCO} = 1M G/c² (15 km)

for M = 10 M_{\odot}

Two Primary Methods of Measuring Spin

Continuum Fitting Method

Fitting the thermal 1-10 keV spectrum of the accretion disk

Fe Line (Reflection) Method

Fitting the relativistically-broadened profile of the ~6.4 keV Fe K line

Continuum Fitting

(Zhang, Cui, & Chen 1997)

Measuring R_{ISCO}

Radius R of a Star $L = 4\pi D^2 F = 4\pi R^2 \sigma T^4$ Solid angle: $(R/D)^2 = F/\sigma T^4$ $D \rightarrow \mathbf{R}$

Radius R_{ISCO} of Disk Hole F and $T \rightarrow \text{solid angle}$ D and $i \rightarrow R_{\text{ISCO}}$

Using many of these ...

Get Spin (LMC X-3)

How Well Does it Work in Practice?

- CR Extremely well
- Multiple independent observations of the same BH
 - α at different luminosities (up to 30% L_{Eddington})
 - or with different instruments
 - separated by many years

LMC X-3: 1983-2009

Steiner et al. 2010

Reflection / Iron Line Method

Coronal X-ray Spectrum "Reflected" by the Disk

Dependence of Fe K Line Profile on Spin

Garcia et al. 2015

spin results from the last decade

S

Black Hole	Spin a₊ (CF)	Spin a₊ (Fe K)	Principal References
Cyg X-1	> 0.98	> 0.9	Gou ea. 14; Tomsick ea. 14, Fabian ea. 12
GRS 1915+105	> 0.98	0.98 ± 0.01	McClintock ea. 2006; Miller ea. 2014
4U 1630-47		> 0.95	King ea. 2014
LMC X-1	0.92 ± 0.06	0.97 ^{+0.02} -0.25	Gou ea. 2009; Steiner ea. 2012
GX 339-4	< 0.9	0.93 ± 0.05	Reis ea. 2008; Kolehmainen & Done 2010
MAXI J1836-194		0.88 ± 0.05	Reis ea. 2012
M33 X-7	0.84 ± 0.05		Liu ea. 2008, 2010
4U 1543-47	0.8 ± 0.1*		Shafee ea. 2006 (also Morningstar ea. 14)
Swift J1753.5		0.76 ± 0.15	Reis ea. 2009
XTE J1650-500		> 0.7	Walton ea. 2012
GRO J1655-40	0.7 ± 0.1*	> 0.9	Shafee ea. 2006; Reis ea. 2009
Nova Mus	~0.6 ± 0.2		Chen ea. 2015
XTE J1752-223		0.52 ± 0.11	Reis ea. 2010
XTE J1652-453		< 0.5	Heimstra ea. 2010, Chiang ea. 2012
XTE J1550-564	0.34 ± 0.28	0.55 ± 0.1	Steiner, Reis ea. 2011
LMC X-3	0.25± 0.15		Steiner ea. 2014
H1743-322	0.2 ± 0.3		Steiner & McClintock 2012
A0620-00	0.12 ± 0.19		Gou ea. 2010
M31 uQ	< -0.2		Middleton ea. 2014

What comes next?

Allo

Burning Questions

How well do the two methods agree?
What produces the spin distribution?
Is there a link between spin and jets?

Challenges

- Next gen, fully consistent Comptonized disk & reflection models

Black Hole	Spin a₊ (CF)	Spin a₊ (Fe K)	Principal References
Cyg X-1	> 0.98	> 0.9	Gou ea. 14; Tomsick ea. 14, Fabian ea. 12
GRS 1915+105	> 0.98	0.98 ± 0.01	McClintock ea. 2006; Miller ea. 2014
4U 1630-47		> 0.95	King ea. 2014
LMC X-1	0.92 ± 0.06	0.97 ^{+0.02} -0.25	Gou ea. 2009; Steiner ea. 2012
GX 339-4	< 0.9	0.93 ± 0.05	Reis ea. 2008; Kolehmainen & Done 2010
MAXI J1836-194		0.88 ± 0.05	Reis ea. 2012
M33 X-7	0.84 ± 0.05		Liu ea. 2008, 2010
4U 1543-47	0.8 ± 0.1*		Shafee ea. 2006 (also Morningstar ea. 14)
Swift J1753.5		0.76 ± 0.15	Reis ea. 2009
XTE J1650-500		> 0.7	Walton ea. 2012
GRO J1655-40	0.7 ± 0.1*	> 0.9	Shafee ea. 2006; Reis ea. 2009
Nova Mus	~0.6 ± 0.2		Chen ea. 2015
XTE J1752-223		0.52 ± 0.11	Reis ea. 2010
XTE J1652-453		< 0.5	Heimstra ea. 2010, Chiang ea. 2012
XTE J1550-564	0.34 ± 0.28	0.55 ± 0.1	Steiner, Reis ea. 2011
LMC X-3	0.25± 0.15		Steiner ea. 2014
H1743-322	0.2 ± 0.3		Steiner & McClintock 2012
A0620-00	0.12 ± 0.19		Gou ea. 2010
M31 uQ	< -0.2		Middleton ea. 2014

Steiner, McClintock, & Narayan 2013, Narayan & McClintock 2012

Summary

 Groups are employing and comparing two major methods currently used for measuring stellar-mass BH spins

- Continuum fitting & reflection modeling
- consistent within ~2 sigma
- The foundation for both methods is empirically supported by the existence of a constant R_{in}.
 - Stability of R_{in} for LMC X-3

• About 20 stellar BH spins measured so far. Can hope to double the sample.

Controversial evidence that jets are powered by BH spin

More to come!