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Figure 3. Final results based on equivalent widths from the lit-
erature (Carretta et al. 2000; Fulbright & Johnson 2003; Bensby
et al. 2004; Akerman et al. 2004; Garćıa Pérez et al. 2006; Fabbian
et al. 2009; Nissen et al. 2002, 2014; Bertran de Lis et al. 2015)
and stellar parameters from Nissen et al. (2014) and Casagrande
et al. (2010, 2011). Top: [O/Fe] vs [Fe/H] inferred from the
[OI] 630 nm line (red circles) and from the OI 777 nm lines (black
diamonds). Lines of best fit to the data in the domains �2.5 <
[Fe/H] < �1.0 and �1.0 < [Fe/H] < 0.0 are overdrawn. The fits
were obtained by minimising �2 and assigning each star equal
weight; where abundances from both diagnostics were available,
the mean value was used. Bottom: di↵erences in [O/Fe] for indi-
vidual stars inferred from the [OI] 630 nm and OI 777 nm lines,
for the cases where both sets of equivalent widths were avail-
able. The median value is 0.02 dex and the standard deviation is
0.14 dex.

Lyman-↵ line provides an e�cient alternative destruction
route for UV photons at low [Fe/H] that completely stifles
the photon pumping e↵ect in the OI 130 nm lines. Thus, in
the absence of an alternative non-LTE mechanism, we are
left with small departures from LTE in the OI 777 nm lines
at low [Fe/H].

4 THE GALACTIC CHEMICAL EVOLUTION
OF OXYGEN

The equivalent widths of the [OI] 630 nm and
OI 777 nm lines were taken from a number of studies
of dwarfs and subgiants based on high signal-to-noise
observations (Carretta et al. 2000; Fulbright & Johnson
2003; Bensby et al. 2004; Akerman et al. 2004; Garćıa Pérez
et al. 2006; Fabbian et al. 2009; Nissen et al. 2002, 2014;
Bertran de Lis et al. 2015). Where more than one value
was available for a given star and line, the unweighted
mean was adopted. For consistency, equivalent widths
across the theoretical 3D non-LTE grid were computed by
fitting Gaussian functions to the line fluxes and integrating
analytically. Stellar parameters were taken from several
recent studies (Casagrande et al. 2010, 2011; Nissen et al.
2014). These Te↵ estimates were either derived using or
critically compared to the accurate IRFM calibrations of

Casagrande et al. (2010); where more than one set of stellar
parameters was available for a given star, the newest set
was adopted.

Hitherto, studies have typically found discrepant results
from the two abundance diagnostics at low [Fe/H] (§1).
In Fig. 3 we compare the [O/Fe] ratios inferred from our
analyses. We have found the [OI] 630 nm line and the
OI 777 nm lines to give similar [O/Fe] vs [Fe/H] trends
down to [Fe/H] ⇡ �2.2, the lowest metallicity in which the
[OI] 630 nm line is detectable in halo subgiants and turn-o↵
stars. Furthermore, the abundances inferred from these di-
agnostics in the atmospheres of the same stars are consistent
to within a standard deviation of 0.14 dex.

It bears repeating that there are two factors in our anal-
ysis that are absent in most previous studies, that conspire
to give concordant results between the two abundance di-
agnostics. First, we have accounted for 3D non-LTE e↵ects
in the OI 777 nm lines: these are of decreasing importance
towards lower [Fe/H] , but even then remain significant. Sec-
ond, we have used new and accurate stellar parameters: the
more reliable IRFM calibrations give Te↵ estimates that are
significantly larger than those typically used in the past.

The [O/Fe] vs [Fe/H] relationship in Fig. 3 reflects the
evolution with time of oxygen and iron yields. Oxygen is syn-
thesised almost entirely in massive stars (M & 8M�), its
most abundant isotope 16O being the endpoint of Helium
burning (Woosley et al. 2002; Clayton 2003; Meyer et al.
2008). Since iron is synthesised in type II supernovae ex-
plosions (Woosley et al. 2002), the plateau at [O/Fe] ⇡ 0.5
between �2.2 . [Fe/H] . �1.0 indicates that massive stars
at this epoch eject an approximately constant ratio of oxy-
gen and iron upon their deaths, in agreement with Galactic
chemical evolution models (François et al. 2004; Kobayashi
et al. 2006). The steep linear decay seen above [Fe/H] & �1.0
is usually interpreted as a sign of the long-lived type Ia
supernovae becoming significant, increasing the rate of en-
richment of iron into the cosmos (Tinsley 1979; McWilliam
1997).

At [Fe/H] . �2.5 there is a slight upturn in [O/Fe],
but it is less pronounced than found from the 1D LTE anal-
yses of OH UV lines by Israelian et al. (1998, 2001) and
Boesgaard et al. (1999). The upturn could indicate a shift
in the mass distribution of stars at earlier epochs; stars that
are more massive and more metal-poor are expected to yield
larger oxygen-to-iron ratios (Kobayashi et al. 2006). We cau-
tion however that inferences in this region are less reliable
because they are based on a very small sample of stars and
on analyses of the OI 777 nm lines alone. A larger sample
of halo turn-o↵ stars with accurate stellar parameters and
very high signal-to-noise spectra will be needed to confirm
this result.
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and stellar parameters from Nissen et al. (2014) and Casagrande
et al. (2010, 2011). Top: [O/Fe] vs [Fe/H] inferred from the
[OI] 630 nm line (red circles) and from the OI 777 nm lines (black
diamonds). Lines of best fit to the data in the domains �2.5 <
[Fe/H] < �1.0 and �1.0 < [Fe/H] < 0.0 are overdrawn. The fits
were obtained by minimising �2 and assigning each star equal
weight; where abundances from both diagnostics were available,
the mean value was used. Bottom: di↵erences in [O/Fe] for indi-
vidual stars inferred from the [OI] 630 nm and OI 777 nm lines,
for the cases where both sets of equivalent widths were avail-
able. The median value is 0.02 dex and the standard deviation is
0.14 dex.
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Post	Bounce	Evolution	of	CCSNe

• Hydrodynamic instabilities in the 
region behind the shock can provide 
increased post shock pressure and 
transport extra energy  

• In axial symmetry, this enhances the 
efficiency of neutrino energy deposition 
and results in successful explosions 
(Mueller et al. ’12, Bruenn et al. ’13)  

• Does the neutrino mechanism work in 
3D?  Lentz et al. ’15 and Melson et al. 
‘15 find it works for some progenitor 
stars using ray-by-ray transport 

• How does this depend on input 
physics and numerics?   
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Figure 2. Maximum, minimum (solid lines) and average (dashed
lines) shock radius for model s27.0 (black lines) and u8.1 (red).

genitors, and is dramatically different from stars even a
few tenths of a solar mass more massive. The density pro-
file more closely resembles an asymptotic giant branch
(AGB) star, or an electron-capture supernova progeni-
tor, than a typical massive star structure in that it has a
low-density “envelope” (ρ < 1 g cm−3) directly on top of
a dense core (ρ > 106 g cm−3) of 1.38M⊙, with a tran-
sition region of only 0.03M⊙, mostly the carbon layer,
in between. Outside the 1.26M⊙ iron core are layers of
silicon (out to 1.30M⊙), oxygen (to 1.36M⊙), neon, and
carbon, with implosive energy generation due to silicon,
oxygen, and neon burning as high as 1017 erg g−1 s−1.
Note that the structure of model u8.1 is specific to such
low-mass supernova progenitors, and not owing to the
initial metallicity of the model; a different initial metal-
licity would only change the location and extent of the
mass range between the AGB channel and the “normal”
channel of iron core evolution familiar from more massive
stars.
Model s27.0, by contrast, has a more massive and less

compact iron core of 1.5M⊙ embedded in a thick silicon
shell that reaches out to 1.68M⊙, where the transition to
the oxygen-enriched silicon shell is located. Compared
to model u8.1, the density drops far less rapidly outside
the iron core. In order to better illustrate the different
density structure of the two models, we show density
profiles of the progenitors in Figure 1.
We use a numerical grid of nr × nθ = 400× 128 zones

with non-equidistant radial spacing for both progeni-
tors. Model s27.0 was simulated using the equation of
state (EoS) of Lattimer & Swesty (1991) with a value
for the bulk incompressibility modulus of nuclear matter
of K = 220 MeV (LS220), while the softer variant with
K = 180 MeV (LS180) was chosen for model u8.1. For
a discussion of the validity of the latter EoS for small-
mass (baryonic mass ! 1.5M⊙) proto-neutron stars de-
spite its marginal inconsistency with the 1.97M⊙ neutron
star found by Demorest et al. (2010), see Müller et al.
(2012). Specifically, the mass-radius relation for hot and
cold neutron stars is very similar for neutron stars well
below the mass limit. As a consquence, both equations
of state yield hardly any difference during the accretion
phase (Swesty et al. 1994; Thompson et al. 2003).

3. RESULTS

Superficially, model s27.0 and u8.1 might appear to
evolve in a very similar fashion: Roughly around 120 ms
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Figure 3. The runaway criterion τadv/τheat for model s27.0
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after bounce the average shock radius starts to increase,
and by 200 ms the shock is already expanding rapidly,
although model s27.0 evidently lags behind u8.1 a little
(Figure 2). Especially during the later phases, the shock
becomes strongly deformed with a ratio rmax/rmin of the
maximum and minimum shock radius on the order of
2 . . . 3. Both models seems to provide similar examples
for an explosion at a relatively early stage.
However, this appearance is deceptive: A hint at

more profound differences between s27.0 and u8.1 is al-
ready furnished by the critical ratio τadv/τheat of the
“advection” or “residence” time-scale and the heating
time-scale for the material in the gain region, which
serves as an indicator for an explosive runaway due
to neutrino energy deposition (for τadv/τheat > 1; see
Janka 2001; Thompson et al. 2005; Buras et al. 2006a;
Murphy & Burrows 2008; Fernández 2012). Figure 3
shows that model s27.0 approaches the critical thresh-
old much later than model u8.1, i.e. at roughly ∼180 ms
instead of ∼110 ms. Nevertheless, even though the run-
away condition is not yet met, the shock already expands
considerably before that time in model s27.0. This sug-
gests that at least for the first ∼180 ms there may be a
driving agent other than neutrino heating that is respon-
sible for pushing the shock outwards. One should bear in
mind, however, that it is not completely clear for which
value of τadv/τheat one could already expect a noticeable
expansion of the shock: Neutrino heating might drive
considerable shock expansion even for τadv/τheat < 1 de-
pending on progenitor specifics. However, it seems in-
evitable that large aspherical motions in the gain regions
with Mach numbers on the order of ∼ 1 will affect the
structure of the accretion flow, including the shock posi-
tion (cp. Section 3.1).

3.1. Growth of Instabilities

The reason for the peculiar evolution of the 27M⊙ pro-
genitor is to be sought in the strong and relatively unim-
peded growth of the SASI as primary instability dur-
ing the first ∼ 200 ms as opposed to neutrino-driven
convection in the 8.1M⊙ star – a feature hitherto not
reported from full multi-group neutrino hydrodynamics
simulations (Marek & Janka 2009; Müller et al. 2012).
As shown by Figures 5 and 4, the morphology of

the post-shock flow in model u8.1 and model s27.0 be-
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Fig. 3.— Explosion diagnostics for model 3Ds (thick lines) compared to the non-exploding model 3Dn (thin lines) as functions of post-bounce time tpb. Top
left: Angle-averaged shock radius (black), gain radius (red) and NS radius (blue; defined by a density of 1011 g cm�3); top right: diagnostic energy (positive
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time-integrated neutrino-energy deposition in the gain layer, respectively.

ca according to

ca =
1
2
�±ga � gs

a
�
, (3)

where the plus sign is for ⌫p and the minus sign for ⌫n scatter-
ing (see, e.g., Horowitz 2002; Langanke & Martı́nez-Pinedo
2003). Since gs

a  0, the cross section for ⌫p-scattering is
increased and for ⌫n-scattering decreased.

Employing Eq. (2) with gs
a = �0.2, Horowitz (2002) es-

timates 15, 21, 23% reduction of the neutral-current opac-
ity for a neutron-proton mixture with electron fractions Ye =
0.2, 0.1, 0.05, which are typical values for the layer be-
tween neutrinosphere (at density ⇢ ⇠ 1011 g cm�3) and ⇢ ⇠
1013 g cm�3 for hundreds of milliseconds after bounce. Since
strangeness does not a↵ect charged-current interactions and
NS matter is neutron-rich, the reduced scattering opacity al-
lows mainly heavy-lepton neutrinos (⌫x ⌘ ⌫µ, ⌫̄µ, ⌫⌧, ⌫̄⌧) to

leave the hot accretion mantle of the PNS more easily. This
was found to enhance the expansion of the stalled SN shock
in 1D models, although not enough for successful shock re-
vival (Liebendörfer et al. 2002; Langanke & Martı́nez-Pinedo
2003). However, below we will show that the situation can be
fundamentally di↵erent in 3D simulations.

4. RESULTS

We compare 2D and 3D core-collapse simulations of the
20 M� star with strangeness corrections in neutrino-nucleon
scatterings, using gs

a = �0.2 (models 2Ds, 3Ds), to corre-
sponding simulations without strange quark e↵ects (gs

a = 0;
models 2Dn, 3Dn) as in all SN simulations of the Garching
group so far. To explore “extreme” e↵ects, our choice of gs

a
is by its absolute value somewhat bigger than theoretical and
experimental determinations of gs

a ⇠ �0.1 (Ellis & Karliner
1997; Alexakhin et al. 2007; Airapetian et al. 2007).



Two	Moment	Neutrino	Transport
EntropyTake	angular	moments	of	the	neutrino	distribution	function:

4 Things that are still missing

• Relativistic asymptotic flux

• higher-order implicit explicit flux integration (second order currently implemented)

• energy bin coupling

• integration with multipatch

5 Formulation of Transport Moment Equations

The number and energy moments of the radiation field are defined by [2, 4]
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Here, l
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is a unit vector orthogonal to the fluid four velocity pointing in direction W. The
primed frame is a coordinate observer frame and the last line shows the complicated mixing
between the moments defined in the fluid rest frame and the laboratory frame. These mo-
ments are defined relative to a particular congruence and it is generally hard to map them
between congruences, none the less they are covariant quantities. Taking the divergence of
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Two	Moment	Neutrino	Transport
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(I did not carefully check the gravitational source terms in these, they are taken directly from
[2]. They can be probably be found from Mabn
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∂tÑ + ∂i

⇣
aF̃ i � b

iÑ
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between the moments defined in the fluid rest frame and the laboratory frame. These mo-
ments are defined relative to a particular congruence and it is generally hard to map them
between congruences, none the less they are covariant quantities. Taking the divergence of
these moments and employing the Lindquist equation gives evolution equations for these
moments
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Get	conservation	equations	for	projections	of	the	rest	frame	energy	dependent	stress	tensor:

Still	need	to	specify	neutrino	stress	tensor:

Amenable to finite volume techniques
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between congruences, none the less they are covariant quantities. Taking the divergence of
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these moments and employing the Lindquist equation gives evolution equations for these
moments
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Boltzmann	Equation:



Reaction Details	&	References

Inelastic,	non-interacting	(Bruenn	‘85)

Ultra-relativistic,	elastic	(Yueh	&	Buchler	’77,	etc.)

Non-relativistic,	One-pion	exchange,	uncertain	
(Hannestad	&	Raffelt	’98)

Ultra-relativistic	(Bruenn	’85)

Inelastic,	non-interacting,	degeneracy	(Bruenn	‘85)

Inelastic,	non-interacting,	degeneracy	(Bruenn	‘85)
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ν + N↔ν + N

€ 

ν + e− ↔ν + e−

€ 

ν +ν + N + N↔ N + N

€ 

ν +ν ↔ e− + e+

€ 

νe + n↔ e− + p

€ 

ν e + p↔ e+ + n

Neutrino	Interactions



Post	Bounce	Evolution	of	CCSNe

LR	et	al.	in	prep
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Neutrino	Heating	Rate

500	km

10351033 Erg/cm3/s



Conclusions
• M1	provides	a	reasonably	good	method	for	
radiative	transfer	in	quasi-spherical	
situations		

• Long	term	evolution	of	post-bounce	CCSNe	
evolution	without	any	imposed	symmetries	

• Shock	runaway	occurs	in	many	models,	but	
have	not	quantified	predicted	explosion	
energies	

• Significant	dependence	on	resolution	and	
assumed	symmetries	

• More	detailed	analysis	of	post-shock	flow	
required	


