Scatter Carefully: Constraining the faint end of the halogalaxy connection with the Local Group

Shea Garrison-Kimmel Caltech

with Emma Bardwell (Case Western), James Bullock (UC Irvine), and Mike Boylan-Kolchin (Texas)

Abundance matching

Halo number density

Abundance matching

to explore faint-end extrapolations

Abundance matching in the LG

Behroozi+2013 AM predicts too many faint galaxies in the LG when applied to LG-like simulations

Abundance matching in the LG

Modified Behroozi+2013 using a steeper low-mass slope (Baldry+2012) agrees well

But we know scatter exists at higher masses...

What is the scatter at the low mass end? Can we constrain it with the LG?

What are the implications of large scatter? e.g., on extant problems in ACDM?

Can the scatter suggested by simulations be correct? Will it correctly predict the LG?

The impact of scatter on mass functions

The impact of scatter on mass functions

More realistic AM: adding scatter

Pegged to Behroozi+2013

Low mass ($M_{halo} \leq 10^{11} M_{sun}$) logslope α allowed to vary freely

Assume symmetric, log-normal scatter, which also varies freely (quoted o is one standard deviation)

Tested many models for assigning stellar mass to halos (one-sided or variable scatter, $M_{\text{star}} < f_{\text{b}}M_{\text{halo}}$, cut-offs in star formation, etc.)

All yield qualitatively similar results!

Scatter and slope are degenerate

Averaged over 24 systems, each with 500 realizations \Rightarrow 12,000 realizations per combination of σ and σ

Scatter and slope are degenerate

Qualitatively identical results using the Local Field

Effects of large σ: too-big-to-fail

Obvious solution: only the largest clumps form stars and host galaxies

Does this actually work?

Massive subhalos are too dense to match the data

Does this actually work?

Boylan-Kolchin+2011,2012

GM(< r)

Too big to fail Subhalos selected by largest mass

Lots of subhalos that *should* have formed stars, but without any observational counterparts

TBTF with large (constant) scatter

Observational evidence for large scatter?

Direct measurements of M_{halo} impossible; indirect hints?

With large scatter, some faint galaxies live in massive halos, which are resistant to reionization quenching

Theoretical evidence for large scatter?

Ultra-high resolution simulations fail to reproduce the downward scatter necessary to avoid overproducing counts in the LG

Conclusions

Scatter in M_{star} - M_{halo} boosts galaxy counts at fixed M_{star}

Require a rapid fall-off to avoid overproducing LG dwarfs: simulations should not trace Behroozi+13 if they exhibit scatter

Large scatter eliminates TBTF from ~25% of realizations by assigning the massive, problematic subhalos ultra-faints

Very difficult to directly test hypothesis that $\sigma \sim 2$ dex, but clues may exist in star formation histories or internal dynamics

No theoretical evidence yet (but need more sims!)