A Decade of Short-duration Gamma-ray Burst Afterglows

Wen-fai Fong University of Arizona

in collaboration with: Raffaella Margutti, Edo Berger, B. Ashley Zauderer

Einstein Fellows Symposium, 10.28.2014

Motivation

Gamma-rays

X-ray Optical Near-IR Radio

Central engine

Prompt emission

Afterglow

Figure adapted from Gehrels et al. 2007

Motivation

Gamma-rays

X-ray Optical Near-IR Radio

Afterglow

Central engine

Prompt emission

Figure adapted from Gehrels et al. 2007

Motivation

Gamma-rays

Central engine

Characterize short GRBs on parsec scales: kinetic energy density opening angle

Prompt emission

X-ray Optical Near-IR Radio

Afterglow

Figure adapted from Gehrels et al. 2007

<u>Outline</u>

Background

Afterglow census

Explosion properties

Application to gravitational waves

One decade ago...

One decade ago...

October 27, 2004

One decade ago...

Two populations of bursts

Credit: NASA

Two populations of bursts

Credit: NASA

Two populations of bursts

Credit: NASA

The first short GRB afterglows

Fox et al. 2005

Hubble Space Telescope

 $\Delta T < 48$ hours

The first short GRB afterglows

Fox et al. 2005

Hubble Space Telescope

$\Delta T < 48$ hours

~23 mag @ 10 hr after burst discovery

Chandra

Chandra

Magellan (Chile)

MMTO (Arizona)

LBT (Arizona)

Magellan (Chile)

MMTO (Arizona)

LBT (Arizona)

UKIRT (Hawaii)

Chandra

Magellan (Chile)

MMTO (Arizona)

LBT (Arizona)

UKIRT (Hawaii)

VLA (New Mexico)

Afterglow census

Why do we need multi-wavelength?

Why do we need multi-wavelength?

Short GRB X-ray afterglows

Short GRB X-ray afterglows

Short GRB optical afterglows

Short GRB optical afterglows

Short GRB optical afterglows

Short GRB radio afterglows

Short GRB radio afterglows

Short GRB radio afterglows

Afterglow census

Afterglow census

Explosion Properties

What can the lack of afterglow detections tell us about their Explosion Properties?

Each burst has its own story...

Population explosion properties

 $<n> = 4.1 \times 10^{-3} \text{ cm}^{-3}$ 95% is <1 cm⁻³

Population explosion properties

No trend with elliptical vs. star-forming host

highly collimated

Application to gravitational wave counterparts

...for an observer angle of twice the opening angle of the jet...

... for an observer angle of twice the opening angle of the jet...

....with typical inputs from ` observed short GRBs...

 $n\sim 10^{-3}$ cm⁻³, E $\sim 10^{49}$ erg

...for an observer angle of twice the opening angle of the jet...

....with typical inputs from observed short GRBs...

...the optical light curve will peak at 24.5 mag (10⁴⁰ erg s⁻¹).

...for an observer angle of twice the opening angle of the jet...

....with typical inputs from observed short GRBs...

...the optical light curve will peak at 24.5 mag (10⁴⁰ erg s⁻¹). Yikes.

