High-Energy Signatures from Leptohadronic Interactions in GRB Models

Maria Petropoulou¹

In collaboration with D. Giannios¹ S. Dimitrakoudis² A. Mastichiadis³

¹Department of Physics & Astronomy, Purdue University, USA ²Institute for Astronomy, Astrophysics, Space Applications & Remote Sensing, National Observatory of Athens, Greece ³Department of Physics, University of Athens, Greece

> Einstein Fellows Symposium 2014 Boston, October 28

Introduction: leptohadronic processes in a nutshell

.- Recent results:

Outline

1) A PeV cutoff of the IceCube neutrino spectrum and a possible meaning for GRB models (*Petropoulou, Giannios, Dimitrakoudis, 2014, MNRAS, 445, 570 ,arXiv:1405.2091*)

2) Non-linear feedback in hadronic models as a trigger for GRB emission (*Petropoulou et al. 2014, MNRAS, 444, 2186 , arXiv:1407.2915*)

(Future aspects)

Introduction

Multi-messenger Astronomy

Photohadronic interactions in a nutshell

Numerical method: PDE solver

(Dimitrakoudis et al. 2012)

Protons:

PeV neutrino emission from GRBs (1)

Aartsen et al. 2014, PhRvL, 113, 10,1101

Flux per flavor:

$$E_v^2 \Phi(E_v) = (0.95 \pm 0.3) \times 10^{-8} \, GeV \, cm^{-2} \, s^{-1} \, sr^{-1}$$

(i) possible cutoff at 2-3PeV (ii) steepening of the spectrum

Motivation:

A PeV cutoff of the IceCube neutrino spectrum and possible meaning for GRB models

Assumptions: (i) GRBs are UHECR accelerators

(ii) IceCube flux = diffuse vflux from GRBs

PeV neutrino emission from GRBs (2)

PeV neutrino emission from GRBs (3)

Conclusions:

1) If GRBs are UHECR accelerators then far-dissipation scenarios with low $p\pi$ efficiency are favored; ν spectral cutoff at >> PeV

2) If dissipation occurs at small distances, the fraction of injected luminosity in UHECRs is << 1

Proton-photon feedback & GRB emission (1) Motivation:

Efficient and fast transfer of energy from protons to photons due to feedback processes (e.g. *Stern & Svensson 1991, Kirk & Mastichiadis 1992, Petropoulou & Mastichiadis 2012*)

Goals: Answer to the (deceptively) simple question

What happens if high-energy protons are injected into a magnetized region?"

Interlude: spontaneous *γ*-ray quenching

(Stawarz & Kirk, 2007, ApJ, 661, 17; Petropoulou & Mastichiadis, 2011, A&A,532, 11)

Gamma-ray production by:

(1) Photopion processes: Stern & Svensson 1991; Petropoulou & Mastichiadis 2012, MNRAS, 421, 2325)

(2) Proton synchrotron radiation: Petropoulou & Mastichiadis, 2012, MNRAS, 426, 462, Petropoulou et al. 2014, MNRAS, 444, 2186

Proton-photon feedback & GRB emission (2)

ASSUMPTIONS

(1) Acceleration of protons to UHE $\,$ (e.g. Ep,max >0.1EeV) with power-law distribution

(2) Band-like photon spectrum not assumed *a priori*

* Proton injection compactness $\ell_{\rm p}^{\rm inj} = \frac{\epsilon_{\rm p} L_{\rm k} \sigma_{\rm T}}{4\pi m_{\rm p} c^4 \delta t \Gamma^5} = 0.43 \frac{\epsilon_{\rm p,0} L_{\rm k,52}}{\delta t_{-1} \Gamma_2^5}$

* Proton critical compactness $\ell_{\rm p,cr} = 4 \times 10^{-4} \Gamma_2^2 \epsilon_{\rm B,-1}^{-1/2} L_{\rm k,52}^{-1/2}$

Basic quantities

Proton-photon feedback & GRB emission (3)

Conclusions

1) Efficient transfer of energy from UHE protons to photons & neutrinos

> 2) Creation of a "Band-like" photon spectrum from first principles

Subcritical:

proton synchrotron γ-ray emission – low efficiency – not GRB like

Supercritical:

Photopion efficiency rises \rightarrow neutrino production; number of cooled pairs increases $\rightarrow \gamma$ -ray spectrum shaped by leptonic processes between photons and cold electrons – GRB like

Thank you

0

Additional slides

0

Comparison of MonteCarlo and PDE solver codes for neutrino production

MC codes

(e.g. Asano et al. 2009, ApJ, 699, 953; • Huemmer et al. 2010, ApJ, 721, 630, Baerwald et al. 2011, PhRvD, 83, 067303)

Pros:

•1) detailed physics of hadronic interactions

2) efficient: good for wide

parameter space searches –

bounds from stacking analyses – model fits

Cons:

1) steady-state approach: timedependency cannot be resolved – feedback effects on the proton or/and photon distribution cannot be taken into account

PDE solver code DMPR12

(Dimitrakoudis et al. 2012, A&A, 546, A120)

Pros:

1) detailed physics of hadronic interactions from SOPHIA MC code

- 2) time-dependent code
- 3) treats feedback effects
- 4) energy conserving scheme

Cons:

1) time-consuming:

not designed for parameter

space studies

2) cannot isolate the contribution of neutral kaons

Comparison of MonteCarlo and PDE solver codes for neutrino production

PeV neutrino emission from GRBs

In close-dissipation scenarios \rightarrow prediction of PeV cutoff !

Interlude: spontaneous *γ*-ray quenching

PROTONS → GAMMA-RAYS – escape

Efficiency

 $Ltot=L_{k}+L_{p}+L_{B}=const \& Ep,max=const$

Future aspects: variability

Motivations:

Lp(t)

Lph(t)

(1) Emission spectra + efficiency depends sensitively on the ratio lp,inj/lp,cr

(2) Power spectral density of γ -ray lightcurves is described by a

(broken) power-law

(e.g. Beloborodov + 2000, ApJ, 535; Dichiara + 2013, MNRAS)

Future aspects: variability

