Cosmological Fast Radio Bursts from Binary White Dwarf Mergers

Kazumi Kashiyama (UC Berkeley) with Kunihito Ioka (KEK) & Peter Meszaros (PSU)

Contents

- I. Cosmological?
- 2. Possible Origins
 - Binary White Dwarf Merger Scenario
- 3. Future Prospects

I. Cosmological(?) Fast Radio Bursts

Fast Radio Bursts

Parks 64m "High Transient Radio Universe" survey High latitude (-70 deg < b < -30 deg)

 $u \sim 1.4 \text{ GHz}$ $S_{\nu} \sim 0.4\text{-}1.3 \text{ Jy}$ $\Delta t < 5 \text{ ms}$

Fast Radio Bursts

Parks 64m "High Transient Radio Universe" survey High latitude (-70 deg < b < -30 deg)

 $\doteq \nu^{-2}$ arrival time pulse sweep

Only detected in a single beam

Radio Dispersion

Galactic Dispersion 1500 г Thornton+13 Δ 1000 Δ DM (cm⁻³pc) _Keane+12 **FRBs** Δ Δ 500 Lorimer+07 Galactic pulsars 0 10 20 30 40 50 60 70 80 90 Ο |b| (deg.) Magellanic Clouds

Intergalactic Dispersion

Einstein symposium@Harverd

Lower limits on the distances

No direct feature from the ionized region \Rightarrow constraints on the size (L) and the distance (d)

The sources are extragalactic, or The dispersions are intrinsic. c.f. "Perytons"

Kulkani+14

If cosmological ...

Event rate

Thornton+I3

- Observing 4078 deg² (0.098 sky) for 270 s
 ⇒ R_{FRB}(F ~ 3 Jy ms) ~ 10⁴ sky⁻¹ day⁻¹
- Lorimer burst (FRB 010724)
 - $\Rightarrow R(F \sim 150 \text{ Jy ms}) = 225 \text{ sky}^{-1} \text{ day}^{-1}$ consistent with N $\propto F^{-3/2}$

•
$$R_{FRB} \sim 10^{-3} \text{ yr}^{-1} \text{ gal}^{-1}$$

c.f. $R_{CCSN} \sim 10^{-2} \text{ yr}^{-1} \text{ gal}^{-1}$
 $R_{NS-NS} \sim R_{GRB} \sim 10^{-5} \text{ yr}^{-1} \text{ gal}^{-1}$

Brightness Temperature

Cosmological FRBs

- DM = 500-1000 cm⁻³ $pc \rightarrow z = 0.5$ -1, $d_L \sim 2$ -6 Gpc
- $\Delta t < 5 \text{ ms} \longrightarrow c \Delta t < 1500 (1+z)^{-1} \text{ km}$
- $S_{\nu} \sim Jy \longrightarrow E_{iso} \sim IO^{38-40} \text{ erg}$
- ~10⁴ day'sky' \longrightarrow ~ 10⁻³ yr'gat' ~ 0.1×R_{CCSN}
- Coherent emission
- No repeated burst so far
- No counterpart so far

2. Possible Origins

Possible Origins

- Galactic
 - Rotating radio transients
 - Flaring stars Loeb+13
- Extragalactic
 - Giant pulse from young pulsars
 - Magnetar giant flares Popov&Postnov 08;Thornton+13
 - Supernovae into nearby stars Calgate+71,75; Egorov&Postnov 08
 - Core-collapses of hypermassive NSs Falcke&Rezzolla 13; Zhang 13
 - Binary NS mergers
 - Binary WD mergers
 - Evaporations of BHs
 - Superconducting cosmic strings

Hansen&Lyutikov+01;Totani 13

KK, Ioka, Meszaros 13

Rees 77; Blandford 77; Kavic+08; Keane+12

Cai+12

Binary White Dwarf Mergers?

Energetics

WD-WD merger \rightarrow differential rotation \rightarrow B amplification

Timescale

WD-WD merger \rightarrow differential rotation \rightarrow B amplification \rightarrow B dissipation in the polar cap \rightarrow injection of e[±] bunches

Event Rate

e.g., Badenes&Maoz 12

Radial velocity distribution of ~ 4000 WDs in SDSS \rightarrow separation distribution (α) & binary fraction (f_{bin})

α	$f_{\sf bin}$	Total Rate $(10^{-13} \text{ mergers yr}^{-1} M_{\odot}^{-1})$	Super-Chandrasekhar Rate $(10^{-13} \text{ mergers yr}^{-1} M_{\odot}^{-1})$		
Entire range	0.014-0.32	1.4 (0.16, 7.2)	0.1 (0.016, 0.4)		
1.0	0.11-0.24	0.3 (0.065, 0.5)	0.03 (0.017, 0.045)		
0.0	0.046-0.22	1.0 (0.46, 2.2)	0.08 (0.03, 0.16)		
-1.0	0.021-0.11	3.0 (1.0, 6.0)	0.16 (0.05, 0.3)		

Local WD Merger Rates and 95% Confidence Limits

 $\mathcal{R}_{WD-WD} \sim 10^{-2} \cdot 10^{-3} \text{ yr}^{-1} \text{gal}^{-1}$

Relativistic e[±] Bunch Formation

An huge E field along with the open B field

 $\Phi_{max} \approx \frac{B\Omega^2 r^3}{2c^2} \sim 2.5 \times 10^{16} \text{ Volt } B_9 \Omega_0^2 r_{8.7}^3$

Curvature Radiation

WD-WD merger \rightarrow differential rotation \rightarrow B amplification \rightarrow B dissipation in the polar cap \rightarrow injection of e[±] bunches \rightarrow Coherent curvature radiation

Luminosity

$$L_{tot} \approx (P_c N_{coh}^2) \times N_{pat}$$

$$P_c \approx \frac{2\gamma e^2 c}{3r_c^2} \sim 5 \times 10^{-17} \text{ erg s}^{-1} \gamma_3^4 r_{c,10}^{-2}$$

 $N_{coh} \approx n_e \times V_{coh} \approx n_e \times \frac{4}{\gamma^2} r_{emi}^2 \frac{c}{\nu_c} \sim n_e \times 2 \times 10^{16} \text{ cm}^3 \gamma_3^{-5} r_{c,10} r_{emi,10}^2$

$$N_{pat} \approx \frac{V_{emi}}{V_{coh}} \approx \frac{4\pi f r_{emi}^2 r_{cap}}{V_{coh}} \sim \frac{9 \times 10^{28}}{V_{coh}} \text{ cm}^3 f r_{emi,10}^2 r_{cap,7.8}$$

 $L_{tot} \sim 4 \times 10^{42} \text{ erg s}^{-1} fn_{e,7} \gamma_3^{-1} r_{c,10}^{-1} r_{emi,10}^4 r_{cap,7.8}$

Electron density

- ✓ Luminosity condition $n_e \sim 2 \times 10^7 \text{ cm}^{-3} L_{43}^{1/2} \gamma_3^{1/2} r_{c,10}^{1/2} r_{emi,10}^{-2} r_{cap,7.8}^{-1/2}$
- ✓ Plasma cutoff limit

$$\nu_{c} \ge \nu_{pe} \approx \frac{\gamma}{2\pi} \left(\frac{4\pi n'_{e} e^{2}}{m_{e}} \right)^{1/2}, \quad n'_{e} = \frac{n_{e}}{\gamma}$$
$$n_{e} \le 0.6 \times 10^{7} \text{ cm}^{-3} \gamma_{3}^{5} r_{c,10}^{-2}$$

✓ Required multiplicity

$$\kappa_{GJ} = \frac{n_e}{n_{GJ}} = \frac{n_e}{B_{emi}\Omega/2\pi ce} \sim 8 \times 10^3 \ n_{e,7}B_{emi,5}^{-1}\Omega_0^{-1}$$
Comparable to young NS pulsars

Binary WD Merger Scenario

M Energetics **Timescale Event** rate **M** Emission mechanism $\left\{ \begin{array}{l} \mbox{Coherent curvature emission with} \\ \gamma \sim 10^{3\text{-}4} \mbox{ and } \kappa_{GJ} \lesssim 10^4 \end{array} \right\}$

Counterparts

- Supernova la (double degenerate model)
- X-ray debris disk Loren-Aguilar+09 KK, loka, Meszaros 13
 - − $L_x < 10^{47}$ erg/s for ~100 s → Swift for nearby FRBs

• Magnetically powered optical transient

Beloborodov 14

Summary

- Fast Radio Bursts
 - If cosmological

high event rate ~ 10^4 yr⁻¹ gal⁻¹ coherent bursts

– Possible scenarios

magnetar giant flares, binary white dwarf mergers, etc

- Perytons
- Multi-messenger observations
 - lower frequency radio
 - counterpart search
- FRB cosmology

Appendix

2. Future Observations

Expected Detection Rate

Figure 2. Expected number of FRBs per hour for various observatories in the high-scattering simulations. The coloured bars show the number of FRBs detectable in imaging surveys, assuming different spectral indices of: 0.0 (white), -1.0, -2.0, -3.0 and -4.0 (darkest grey). The number of FRBs detectable in beamformed surveys are indicated by the bars with a solid black outline. The DM range used was $0 - 6000 \text{ pc cm}^{-3}$.

FRB Cosmology

$$DM_{IGM} = \frac{3}{8\pi} \frac{cH_0\Omega_b}{Gm_p} \int_0^z \frac{(1+z)dz}{[\Omega_m(1+z)^3 + \Omega_\Lambda]^{1/2}} + \frac{2\times 10^4}{1.5\times 10^4}$$

$$d_L = \frac{c(1+z)}{H_0} \int_0^z \frac{dz}{[\Omega_m(1+z)^3 + \Omega_\Lambda]^{1/2}} = \frac{10^4}{10^4}$$

$$\int_0^{\frac{1}{2}} \frac{10^4}{10^4} = \frac{10^4}{10^4}$$

- Reionization
- Missing baryon
- Dark energy, cosmological parameters, etc

McQuinn 13; Deng & Zhang 14; Kalkarni+14

Multi-messenger observations

- Lower frequencies with larger FOV
- Optical, X-ray, and gamma-ray counterparts?
- GW and neutrino counterparts?

Lorimer Burst, Sparker, FRB 010724

Einstein symposium@Harverd

Lorimer Burst, Sparker, FRB 010724

Keane Burst, FRB 010621

- The Parkes Multi-beam Pulsar Survey
- 288 MHz band centered on ~1.4 GHz
- Detected in a single beam
- 13:02:10.795 UTC
- S/N ~ 16.3
- DM = $746 \pm 1 \text{ cm}^{-3}$
- Peak flux ~ 0.4 Jy
- Pulse width ~ 7.8 ms
- No counterpart
- No repeated bursts

Terrestrial?

Burke-Spolaor+11; Kocz+12

"Perytons"

- ✓ Hit all 13 receivers
- Temporal distributions (UTC range 0-3)
- ✓ Some show ~ ν^{-2} dispersion (some not)

FRBs \neq **Perytons**?

- FRBs are detected in a single beam.
- Perytons have ∆t ~ 30-50 ms, which is ~10 times larger than FRBs.
- Perytons have symmetric, but some FRBs have an exponential tail.
- Perytons have DM ~ 200-400 cm⁻³pc, which is smaller than 4 FRBs.
- Atmospheric emissions at different heights?

– Perytons < 10 km < Lorimer burst < FRBs Kulkani+14

Arecibo Detects FRB 121102

Pulsar ALFA survey targeting low latitude (|b| < 5 deg) Spitler+14

 $u \sim 1.4 \text{ GHz}$ Hit a single beam
(maybe a sidelobe)

Coherent radio emissions with GRBs?

Baninister+12

Figure 2. DM vs. time for the two GRBs with single-pulse candidates. Single-pulse detections with a significance $\geq 6\sigma$ appear as circles in this plot, with the size proportional to the S/N. The detections are color coded according to their classification by the friends-of-friends algorithm as candidates (blue), false positives (red) and RFI (grey). Top panel: GRB 100704A with a single pulse candidate 1076 seconds after the GRB at a DM of 195 pc cm⁻³, with a significance of 6.2σ and width of 6 ms. Bottom panel: GRB 101011A with a single pulse candidate 524 seconds after the GRB at a DM of 570 pc cm⁻³, with a significance of 6.6σ and width of 25 ms. The time origin of these plots is the time that the telescope first arrived on source ($T_{\rm on}$). For clarity, DMs from 1000 pc cm⁻³ are not shown.

Host Galaxy

Thornton+13

• Galactic center: DM > 700 cm⁻³ pc

 $- W \propto D_{obs} D_{scr} / (D_{obs} + D_{scr})^2$ - If $D_{scr} << D_{obs}$, it locates at the galactic center

- Elliptical host: low DW
- Spiral host: DM > 700 cm⁻³ pc if I > 87 deg (5 %)
- Intervening galaxy: P < 5%

Coherent emission

• Emission from N particles

$$P_{tot} = |\sum_{k=1}^{N} E_k e^{i\phi_k}|^2$$
$$= \sum_{k=1}^{N} |E_k|^2 + \sum_{k \neq j} E_k E_j e^{-i(\phi_k - \phi_j)}$$

$$= PN + P\sum_{k\neq j} e^{-i(\phi_k - \phi_j)}$$

$$n^{-1/3} > \lambda \rightarrow P_{tot} = PN$$
 incoherent $n^{-1/3} < \lambda \rightarrow P_{tot} = PN^2$ coherent

Induced Compton

Melrose 71; Wilson & Rees 78; Lyubarsky 08

Compton scattering is enhanced by coherent photons

$$\frac{\partial n(\nu, \mathbf{\Omega})}{\partial t} + c(\mathbf{\Omega} \cdot \nabla) n(\nu, \mathbf{\Omega}) = \frac{3\sigma_{\mathrm{T}}}{8\pi} N \frac{h}{m_e c} n(\nu, \mathbf{\Omega})$$
$$\times \int (\boldsymbol{e} \cdot \boldsymbol{e}_1)^2 (1 - \mathbf{\Omega} \cdot \mathbf{\Omega}_1) \frac{\partial \nu^2 n(\nu, \mathbf{\Omega}_1)}{\partial \nu} d\mathbf{\Omega}_1,$$

✓ induced Compton limit

$$\gamma \ge 2000 \ r_{c,10}^{3/14} r_{emi,10}^{3/14} n_{e,7}^{3/14}$$

Free-Free Absorption Kulkani+14

- $\tau_{\rm ff} \sim 5 \Rightarrow$ 1.2-1.5 GHz can be strongly affected.
- ✓ Hot ionized nebula

$$\tau_{ff} \sim 2.7 \left(\frac{DM}{325 \text{ cm}^{-3} \text{ pc}}\right) \left(\frac{\nu}{1.4 \text{ GHz}}\right)^{2.1} \left(\frac{T_e}{8000 \text{ K}}\right)^{-1.35} \left(\frac{l}{0.01 \text{ pc}}\right)^{-1}$$

✓ Stellar wind

$$\tau_{ff} \sim 1.9 \left(\frac{\dot{M}}{10^{-5} \ M_{\odot} \text{yr}^{-1}} \right)^2 \left(\frac{v_w}{10^8 \ \text{cm s}^{-1}} \right)^{-2} \left(\frac{l}{10^{15} \ \text{cm}} \right)^{-3}$$

Propagation effect

Figure 1. Scattering time at 1 GHz versus dispersion measure showing the radio pulsars (adapted from Bhat et al. 2004) along with current scattering constraints on FRBs. The green and blue triangles indicate the scattering timescale upper limits of 1 ms at 1.4 GHz for the FRBs discussed in Lorimer et al. (2007) and Keane et al. (2012), scaled to 1 GHz. The red circle indicates the scattering timescale of 1 ms scaled to 1 GHz measured for one of the FRBs discussed in Thornton et al. (2013). The other FRBs, with DMs of 944, 723, and 553 cm⁻³ pc have scattering timescale upper limits of 1 ms.

Lorimer+13

Low (frequency) is More (Events)?

Lorimer+13

"The scattering effects at lower radio frequency are less than previously thought."

Even z > 0.5 events can be detectable in surveys below I GHz

Sources may already be present in 350-MHz surveys with the GBT. Surveys at 150 MHz with 30 deg² FoV could detect 1 event/hr above 30 Jy...

LOFAR non-detection

	FRB 010724	FRB 010621	FRB 110220	FRB 110627	FRB 110703	FRB 120127
Observed Width (ms)	4.6	8.3	5.6	< 1.4	< 4.3	< 1.1
$(\tau_0^2 + \tau_s^2)^{1/2}$ (ms)	3.1	4.8	5.5	< 1.1	< 4.1	< 0.9
Predicted $\tau_{\rm s} \ ({\rm ms})^{\star}$	2.89	177	802	145	2251	28
Dispersion Measure(pc $\rm cm^{-3}$)	375 ± 1	746 ± 1	$944.38 {\pm} 0.05$	$723.0 {\pm} 0.3$	$1103.6 {\pm} 0.7$	$553.3 {\pm} 0.3$
Extragalactic DM (pc $\rm cm^{-3}$)	330	213	910	677	1072	521
Peak Flux Density (Jy)	$30{\pm}10$	$0.4{\pm}0.1$	1.3	0.4	0.5	0.5
Spectral Index ^{$\dagger 2$}	-4 ± 1	0 ± 1	0 ± 1	0 ± 1	0 ± 1	0 ± 1
Observed Rate $(hr^{-1} deg^{-2})^{\ddagger}$	$0.0019\substack{+0.0045\\-0.0006}$	$0.00051\substack{+0.0013\\-0.0001}$	$0.0017\substack{+0.0013\\-0.0005}$	$0.0017\substack{+0.0013\\-0.0005}$	$0.0017\substack{+0.0013\\-0.0005}$	$0.0017\substack{+0.0013\\-0.0005}$

Table 1. Observed properties of known extragalactic bursts.

*From Bhat et al. (2004). [†]Spectral index of the peak flux density.

[‡]Uncertainties are determined following Gehrels (1986).

Hassall+13

Table 3. Comparison of the parameters used for simulations of current and planned telescopes. The values of field-of-view and $A_{\rm eff}/T_{\rm sys}$ given here are calculated for the centre of the observing band listed. For LOFAR, we use noise levels derived from current transient imaging surveys, which may improve in the future.

Telescope	$\frac{A_{\rm eff}/T_{\rm sys}}{\rm (m^2/K)}$	$ \frac{ u_{\rm low}}{({ m MHz})} $	$rac{ u_{ m high}}{ m (MHz)}$	FoV (deg^2)	Reference
SKA-low	5000	50	350	27	Dewdney et al. (2013)
SKA_1 -low	1000	50	350	27	Dewdney et al. (2013)
SKA-mid	10000	1000	2000	0.5	Dewdney et al. (2013)
SKA_1 -mid	1630	1000	2000	0.5	Dewdney et al. (2013)
LOFAR-HBA	110	155	165	150	Stappers et al. (2011), van Haarlem et al. (2013)
LOFAR-LBA	0.5	30	80	100	Stappers et al. (2011), van Haarlem et al. (2013)
MWA	13.0	185	215	375	Tingay et al. (2013)
ASKAP	81	700	1000	30	Johnston, Feain & Gupta (2009)
MeerKAT	220	580	1750	1.0	de Blok et al. (2010)
Parkes Multi-beam	92	1230	1518	1.1	Manchester et al. (2001)
Molonglo	277	790	890	12	Green et al. (2012)
UTR-2	0.5	10	20	40	Abranin et al. (2001)
LWA	30	50	70	20	Ellingson et al. (2009)

Energy Injection

The spin-down luminosity is not enough.

$$L_{sd} \approx \frac{B^2 r^6 \Omega^4}{c^3} \sim 1.7 \times 10^{38} \text{ erg s}^{-1} \ B_9^2 r_{8.7}^6 \Omega_0^4 \ll 10^{43} \text{ erg s}^{-1}$$

ct. solar flares

magnetar flares Magnetic energy dissipation in the polar cap

Newly born white dwarf pulsar

Magnetized White Dwarfs

