Probing Young Accreting Stars with X-Rays

Andrea Dupree, CfA

Collaboration with Nancy Brickhouse and Steve Cranmer (CfA)

Einstein Symposium, October 28, 2014

CHANDRA Spectroscopy of Accreting Cool Stars

Plasma diagnostics give parameters of accretion
CHANDRA spectra define

accretion models

Time-domain spectroscopy (simultaneous multi-

wavelength) changes accretion paradigm

TW Hya... closest accreting star

TIS

Optical Debes+ 2013

CO 3-2: Andrews+ 2012

Donati+ 2011

Rich CHANDRA Spectrum

CHANDRA Plasma Diagnostics: Helium-like ions

Singlets Triplets

Helium-ion diagnostics

High Ne at Low T (3 MK) Shock O VII indicates lower density(!)

Kastner+ 2002; Brickhouse+ 2010

incoming atoms

photosphere

Modeling the spectra

Predicted and observed MEG spectra

Brickhouse+ 2010

Accretion Lines vs Coronal Lines

Accretion Lines: N VII, O VIII, Ne IX, Fe XVII, Mg XI Coronal Lines: Ne X, Mg XII, Si XIII, Si XIV, Fe XIII, FeXXII

3 pointings: Ne IX Diagnostics

Shock Temperature changes => free-fall velocity changes => disk distance changes

Absorbing column changes (N_H) => path length changes

Brickhouse+ 2012

Cranmer 2008

Ne IX diagnostics constrain model

Te, Ne, N_H constrain M_dot, B, and f

Accretion variability

X-Ray accretion lines: N VII, O VIII, Ne IX, Fe XVII, Mg XI

H-alpha asymmetry change 9 minutes later increased inflow for 1.5 hours

Optical spectra: Magellan/MIKE

Dupree+ 2012

Suggests optical lines formed in postshock region Dupree+ 2012

Coronal enhancements follow increase in veiling

He I validates model.... with time-domain spectroscopy

Dupree+ 2014

Dupree+ 2014

Combination of X-ray spectroscopy + optical/ near-IR spectra enable discoveries and understanding...(multi-wavelength/time domain)

Broad emission lines (optical, UV, X-ray) arise in turbulent post-shock region (not 'accretion funnels') and are wind-scattered.

These observations require a paradigm shift for accretion in young stars.

Time delays suggest corona heated by accretion processes; possibly drive wind too.

- Address structure of post-shock cooling region
- Evaluate wind and mass loss
- Study accreting star at another orientation
- Increase time-domain observations....