ZACHARY SLEPIAN
 UNIVERSITY OF FLORIDA/LBNL/BCCP

DECOUPLING THE INTEGRALS OF COSMOLOGICAL PERTURBATION THEORY

WORK WITH BOB CAHN

EINSTEIN SYMPOSIUM I CFA I CAMBRIDGE I 2 OCTOBER 2018

SDSS BOSS: ~I M galaxies (to 2016)

DESI: ~30 M galaxies, quasars (20|9-2024)

5 k robotic positioners: reconfigure in \sim I minute

BOSS CMASS:sample

Ultimate goal: cosmological parameters 6 numbers, perhaps 8

Density of matter, baryons, \& dark energy; dark energy $w, H_{0}, n_{s}, \sigma_{8} ; m_{v}, r$

Test gravity and inflation
To hold the Universe's origins and eventual fate all at once together in the mind

```
Linear Non-Linear
\[
z \sim 100
\]
\[
z \sim 0-2
\]
```


Perturbation theory: observed statistics of galaxy clustering \rightarrow linear theory \rightarrow cosmological parameters

Analyze DESI: MCMC over millions of cosmo. parameter sets \rightarrow observable stats.

Can we make PT faster?

COSMOLOGICAL PERTURBATION THEORY

Focus on CDM, assume fluid, consider solely gravity
Mass conservation, momentum conservation, gravitational potential

$$
\begin{gathered}
\dot{\delta}+\nabla \cdot[(1+\delta) \vec{v}]=0 \\
\dot{\vec{v}}+(\vec{v} \cdot \nabla) \vec{v}=-\mathcal{H} \vec{v}-\nabla \phi \\
\nabla^{2} \phi=4 \pi G \bar{\rho} a^{2} \delta
\end{gathered}
$$

Drop non-linear terms \rightarrow linear solution Non-linear terms \rightarrow mode coupling

Write in Fourier space, get recursion relation for kernels to integrate against to generate h.o. solutions from lower

Find h.o. density in terms of linear densities

Get non-linear density statistics in terms of those of linear density

All possible pairwise gluings of linear densities: "contractions" \rightarrow linear power spectra

FOR INSTANCE

$$
P_{\text {non-lin }, 1-\operatorname{loop}}(k)=P_{\text {lin }}(k)+2 P_{13}(k)+P_{22}(k)
$$

$$
P_{\text {non-lin,2-loop }}(k)=P_{\text {non-lin,1-loop }}(k)
$$

$$
+P_{15}(k)+2 P_{24}(k)+P_{33}(k)
$$

GIVES HI-D COUPLED INTEGRALS

$$
I_{i j}(k)=\sum_{\ell m} \frac{4 \pi}{2 \ell+1} \int \frac{d \Omega_{k}}{4 \pi} \int \frac{d^{3} \vec{q}_{1}}{(2 \pi)^{3}} \frac{d^{3} \vec{q}_{2}}{(2 \pi)^{3}}
$$

$$
\text { 2-loop } \rightarrow 6^{\text {th }} \quad \times \frac{N_{\ell}^{[1]}\left(q_{1}\right) N_{\ell}^{[2]}\left(q_{2}\right) Y_{\ell m}\left(\hat{q}_{1}\right) Y_{\ell m}^{*}\left(\hat{q}_{1}\right)}{q_{1}^{2 n_{1}}\left|\vec{k}+\vec{q}_{1}\right|^{2 n_{1}^{\prime}} q_{2}^{2 n_{2}}\left|\vec{k}+\overrightarrow{q_{2}}\right|^{2 n_{2}^{\prime}}}
$$

$$
\times \frac{P_{\operatorname{lin}}\left(q_{1}\right) P_{\operatorname{lin}}\left(q_{2}\right)}{\left|\vec{q}_{1}+\vec{q}_{2}\right|^{2 n_{3}}\left|\vec{k}+\vec{q}_{1}+\vec{q}_{2}\right|^{2 n_{3}^{\prime}}} P_{\operatorname{lin}}\left(\left|\vec{w}_{i j}\right|\right)
$$

$$
\vec{w}_{15}=\vec{k}, \quad \vec{w}_{24}=\vec{k}+\vec{q}_{2}, \quad \vec{w}_{33}=\vec{k}+\vec{q}_{1}+\vec{q}_{2} .
$$

Super computationally costly to compute loop corrections Denominators come from inverse nablas evaluated at non-linear momenta

CAN WE
Evaluate this coupled 9-D integral as a series of nested 3D convolutions?

WHY CONVOLUTIONS?

$$
[f \star g](\vec{r})=\int d^{3} \vec{x} f(\vec{x}) g(\vec{x}+\vec{r})
$$

Looks like a 3-D integral at every 3-D vector r: N^{2}

Convolution Theorem: do this as a product in Fourier space, becomes $N \log N$ instead of N^{2}

FURTHER.

Can we exploit the fact that the power spectrum is the only thing not known analytically, and it is isotropic, to . . .
reduce the 3-D convolutions to I-D ones, to be done with FFTs?

$$
\begin{gathered}
I_{i j}(k)=\sum_{\ell m} \frac{4 \pi}{2 \ell+1} \int \frac{d \Omega_{k}}{4 \pi} \int \frac{d^{3} \vec{q}_{1}}{(2 \pi)^{3}} \frac{d^{3} \vec{q}_{2}}{(2 \pi)^{3}} \\
\times \frac{N_{\ell}^{[1]}\left(q_{1}\right) N_{\ell}^{[2]}\left(q_{2}\right) Y_{\ell_{m}}\left(\hat{q}_{1}\right) Y_{\ell m}^{*}\left(\hat{q}_{1}\right)}{q_{1}^{2 n_{1}}\left|\vec{k}+\vec{q}_{1}\right|^{2 n_{1}^{\prime}} q_{2}^{2 n_{2}}\left|\vec{k}+\vec{q}_{2}\right|^{2 n_{2}^{\prime}}} \\
\times \frac{P_{\operatorname{lin}}\left(q_{1}\right) P_{\operatorname{lin}}\left(q_{2}\right)}{\left|\overrightarrow{q_{1}}+\vec{q}_{2}\right|^{2 n_{3}}\left|\vec{k}+\vec{q}_{1}+\vec{q}_{2}\right|^{2 n_{3}^{\prime}}} P_{\operatorname{lin}}\left(\left|\vec{w}_{i j}\right|\right) \\
\vec{w}_{15}=\vec{k}, \quad \vec{w}_{24}=\vec{k}+\vec{q}_{2}, \quad \vec{w}_{33}=\vec{k}+\vec{q}_{1}+\vec{q}_{2} .
\end{gathered}
$$

Inner: I5: group q_{I} and k and convolve over q_{2} in $q_{2}, q_{2}+\left(k+q_{I}\right)$ 24: convolve over q_{2} in $q_{2}, q_{2}+k$ 33: same as 15

Problem: coupled denominators, boxed red for 15/33, blue for 24

HOW DO WE FACTOR

 DENOMINATORS?$$
\frac{1}{\left|\vec{p}_{1}+\vec{p}_{2}\right|^{N}}, \quad N=2,4
$$

If $\mathrm{N}=1$ could use a multipole expansion Generalization is Gegenbauer expansion

$$
\frac{1}{\left|\overrightarrow{p_{1}}+\vec{p}_{2}\right|^{2 \lambda}}=\sum_{\ell=0}^{\infty} \frac{p_{<}^{\ell}}{p_{>}^{\ell+2 \lambda}} C_{\ell}^{(\lambda)}\left(\hat{p}_{1} \cdot \hat{p}_{2}\right)
$$

Use Gegenbauer polynomial addition theorem to separate into $f\left(p_{1}\right) g\left(p_{2}\right)$, turns out better to split into spherical harmonics using "mixed" addition theorem
But still a problem: radial term is only formally factored: have constraint $p_{1}<p_{2}$ or visa versa: "I/2-plane constraint"

USING A DECOUPLING INTEGRAL

$$
\begin{gathered}
\frac{2}{\pi} \int_{0}^{\infty} d x x\left[j_{\ell+1}\left(x p_{1}\right) j_{\ell}\left(x p_{2}\right)+j_{\ell+1}\left(x p_{2}\right) j_{\ell}\left(x p_{1}\right)\right] \\
=\frac{p_{2}^{\ell}}{p_{1}^{\ell+2}}, \quad p_{1}>p_{2}, \frac{p_{1}^{\ell}}{p_{2}^{\ell+2}}, \quad p_{2}>p_{1}
\end{gathered}
$$

Can prove using jijı expansion for I/|pI $+p_{2} \mid$, comparing that with multipole expansion, and then using recursion relations for sBFs

This integral truly factorizes the problem, as it always enforces the "I/2-plane constraint"

Can now integrate over momentum magnitudes separately
But the price is an extra integral over x at the end

INTEGRAL TO SUM IDENTITY

$$
\begin{gathered}
\int_{0}^{\infty} d x x\left[j_{\ell+1}\left(x p_{1}\right) j_{\ell}\left(x p_{2}\right)+j_{\ell+1}\left(x p_{2}\right) j_{\ell}\left(x p_{1}\right)\right] \\
=\sum_{n} n \epsilon_{n} \sqrt{p_{1} p_{2}}\left[j_{\ell+1}\left(n p_{1}\right) j_{\ell}\left(n p_{2}\right)+j_{\ell+1}\left(n p_{2}\right) j_{\ell}\left(n p_{1}\right)\right] \\
\epsilon_{n}=1 / 2, \quad n=0, \quad 1, n>0
\end{gathered}
$$

Eigenfunction expansion is thus

$$
\begin{aligned}
& \frac{1}{\left|\vec{p}_{1}+\vec{p}_{2}\right|^{2}}=\sum_{\ell=0}^{\infty} \sum_{n=0}^{\infty} n \epsilon_{n} \sum_{j=0}^{\ell} w_{j}^{\ell, 1} \sum_{s=-j}^{j} {\left[\phi_{n \ell j s}^{[2+]}\left(\vec{p}_{1}\right) \phi_{n \ell j s}^{[2-]}\left(\vec{p}_{2}\right)\right.} \\
&\left.+\phi_{n \ell j s}^{[2+]}\left(\vec{p}_{2}\right) \phi_{n \ell j s}^{[2-]}\left(\vec{p}_{1}\right)\right] \\
& \phi_{n \ell j s}^{[2],+}(\vec{p})=\sqrt{p} j{ }_{\ell+1}(n p) Y_{j s}(\hat{p}), \quad \phi_{n \ell j s}^{[2],-}(\vec{p})=\sqrt{p} j_{\ell}(n p) Y_{j s}(\hat{p})
\end{aligned}
$$

HOW ABOUT INVERSE FOURTH POWER?

Could use $\chi=2$ in

$$
\frac{1}{\left|\vec{p}_{1}+\vec{p}_{2}\right|^{2 \lambda}}=\sum_{\ell=0}^{\infty} \frac{p_{\ell}^{\ell}}{p_{>}^{\ell+2 \lambda}} C_{\ell}^{(\lambda)}\left(\hat{p}_{1} \cdot \hat{p}_{2}\right)
$$

But would mean need difference of 4 in radial piece
No decoupling integral for that (and conjecture cannot find one given divergence props. of sBFs)

Instead:

$$
\begin{gathered}
\frac{1}{\left|\vec{p}_{1}+\vec{p}_{2}\right|^{4}}=\frac{1}{2 p_{1} p_{2}} \frac{\partial}{\partial\left(\cos \theta_{12}\right)}\left[\frac{1}{\left|\vec{p}_{1}+\vec{p}_{2}\right|^{2}}\right] \\
\frac{d}{d x}\left[C_{\ell}^{(\lambda)}(x)\right]=2 \lambda C_{\ell-1}^{(\lambda+1)}(x)
\end{gathered}
$$

Leads to eigenfunction expansion for inverse 4th power

RETURNING TO OUR FULL PROBLEM

$$
\begin{gathered}
I_{i j}(k)=\sum_{\ell m} \frac{4 \pi}{2 \ell+1} \int \frac{d \Omega_{k}}{4 \pi} \int \frac{d^{3} \vec{q}_{1}}{(2 \pi)^{3}} \frac{d^{3} \vec{q}_{2}}{(2 \pi)^{3}} \\
\times \frac{N_{\ell}^{[1]}\left(q_{1}\right) N_{\ell}^{[2]}\left(q_{2}\right) Y_{\ell m}\left(\hat{q}_{1}\right) Y_{\ell m}^{*}\left(\hat{q}_{1}\right)}{q_{1}^{2 n_{1}}\left|\vec{k}+\vec{q}_{1}\right|^{2 n_{1}^{\prime}} q_{2}^{2 n_{2}}\left|\vec{k}+\vec{q}_{2}\right|^{2 n_{2}^{\prime}}} \\
\times \frac{P_{\operatorname{lin}}\left(q_{1}\right) P_{\operatorname{lin}}\left(q_{2}\right)}{\vec{q}_{1}+\vec{q}_{2}\left|{ }^{2 n_{3}}\right| \vec{k}+\vec{q}_{1}+\left.\vec{q}_{2}\right|^{2 n_{3}^{\prime}}} P_{\operatorname{lin}}\left(\left|\vec{w}_{i j}\right|\right) \\
\vec{w}_{15}=\vec{k}, \quad \vec{w}_{24}=\vec{k}+\vec{q}_{2}, \quad \vec{w}_{33}=\vec{k}+\vec{q}_{1}+\vec{q}_{2} .
\end{gathered}
$$

We have now factorized the problem terms, so can incorporate them as additional factors on terms in just \boldsymbol{q}_{1} and \boldsymbol{q}_{2}

Just left with 3-D convolutions of sBFs X power spectrum X power laws X spherical harmonics, do angular part analytically

$$
\rightarrow I-D
$$

$$
I_{15} \rightarrow \sum \int r^{2} d r f_{c c^{\prime \prime}\left(N ; N^{\prime} ; r\right) f f_{L L^{\prime} L^{\prime \prime}}^{n^{\prime}}\left(N ; N^{\prime} ; r\right) .}
$$

$$
f_{\ell \ell^{\prime} \ell^{\prime \prime}}^{n}\left(N ; N^{\prime} ; r\right)=\int q^{2} d q q^{N} P_{\operatorname{lin}}(q) j_{\ell}(N q) j_{\ell^{\prime}}\left(N^{\prime} q\right) j_{\ell^{\prime \prime}}(q r)
$$

I-D is much much better than 9-D

NEXT STEPS

Convergence

Implementation

Compare with other methods: Simonovic + 2017 power law approach; Fang \& McEwen, Gebhardt \& Jeong

N-body integrator?

SOLUTIONS IN TERMS OF

INTEGRALS OF LINEAR FIELDS AGAINST KERNELS

$$
\begin{array}{r}
\tilde{\delta}(\vec{k}, \tau)=\sum_{n=1}^{\infty}(2 \pi)^{-3 n} \int d^{3} \vec{q}_{1} \cdots d^{3} \vec{q}_{n}(2 \pi)^{3} \delta_{\mathrm{D}}^{33}\left(\vec{k}-\sum_{i=1}^{n} \vec{q}_{i}\right) \\
\times F_{n}^{(s)}\left(\vec{q}_{i}\right) \tilde{\delta}_{\operatorname{lin}}\left(\vec{q}_{1}, \tau\right) \cdots \tilde{\delta}_{\operatorname{lin}}\left(\vec{q}_{n}, \tau\right),
\end{array}
$$

$$
\begin{aligned}
& \tilde{\theta}(\vec{k}, \tau)=-f(\tau) \mathcal{H}(\tau) \sum_{n=1}^{\infty}(2 \pi)^{-3 n} \int d^{3} \vec{q}_{1} \cdots d^{3} \vec{q}_{n} \\
& \quad \times(2 \pi)^{3} \delta_{\mathrm{D}}^{[3]}\left(\vec{k}-\sum_{i=1}^{n} \vec{q}_{i}\right) G_{n}^{(s)}\left(\vec{q}_{i}\right) \tilde{\delta}_{\operatorname{lin}}\left(\vec{q}_{1}, \tau\right) \cdots \tilde{\delta}_{\operatorname{lin}}\left(\vec{q}_{n}, \tau\right),
\end{aligned}
$$

$$
\begin{aligned}
& F_{n}\left(\vec{q}_{i}\right)=\sum_{m=1}^{n-1} \frac{G_{m}\left(\vec{q}_{\leq m}\right)}{(2 n+3)(n-1)}\left[(2 n+1) \frac{\vec{k} \cdot \vec{k}_{1}}{k_{1}^{2}} F_{n-m}(\vec{q}>m)\right. \\
&\left.+\frac{k^{2}\left(\vec{k}_{1} \cdot \vec{k}_{2}\right)}{k_{1}^{2} k_{2}^{2}} G_{n-m}(\vec{q}>m)\right]
\end{aligned} \quad \begin{aligned}
& G_{n}\left(\vec{q}_{i}\right)=\sum_{m=1}^{n-1} \frac{G_{m}\left(\vec{q}_{\leq m}\right)}{(2 n+3)(n-1)} {\left[3 \frac{\vec{k} \cdot \vec{k}_{1}}{k_{1}^{2}} F_{n-m}\left(\vec{q}_{>m}\right)\right.} \\
&\left.+n \frac{k^{2}\left(\vec{k}_{1} \cdot \vec{k}_{2}\right)}{k_{1}^{2} k_{2}^{2}} G_{n-m}(\vec{q}>m)\right],
\end{aligned}
$$

Sum over m represents all possible splittings of $n^{\text {th }}$ order term into 2 lower order terms ($\mathrm{n}-\mathrm{m}$) X m

Terms in I/k come from inversion of nabla

