Forward, causal modeling of galaxy photometry

Joint self-calibration of SEDs and broadband photometry

Boris Leistedt — @ixkael, www.ixkael.com NASA Einstein Fellow, New York University

Spectroscopic vs. photometric surveys

DECAM

DECAM

SDSS 10⁷ galaxies 10⁶ quasars

volume x 10 objects x 10 **DES/KIDS** 10⁸ galaxies 10⁶⁻⁷ quasars

volume x 1000 **LSST** 10⁹ galaxies 10⁷ quasars

Challenges of photometric surveys

- Flux and shear measurements
- Modeling intrinsic alignments
- Modeling small scales baryonic physics
- Form of covariances, likelihoods
- Photometric redshifts, redshift distributions
- Image artefacts, blending
- Simulations of realistic galaxies and photometry

Photometric redshift

= estimating redshift from noisy broadband photometry

using knowledge of observed or synthetic SEDs, bandpasses, etc

Three classes of methods

templateFitting SEDs to photometry using likelihoodfittingfunctionRequires calibrated SEDs/priors & unbiased data

machine learning

clustering

redshifts

Construct **flexible model** from spectroscopic training *No likelihood, built-in prior, needs representative data*

Constrain N(z) using spatial **cross-correlations** *Requires overlapping samples, bias model*

Template fitting in cosmology

BPZ code applied to 5-band photometry

Benitez et al, arXiv:9811189

Trust photometry and recalibrate SEDs/priors? Trust SED model and recalibrate photometry?

How many templates? Form of priors? What about spatially-varying photometry? Unrepresentative spectroscopic testing data?

Machine learning in physics 1

 ML absorbs data complexity

►

- But time/training wasted on learning known physics
- Encode physics in ML to generalize/extrapolate outside of training data

ML forced to satisfy physics of redshift to improve robustness to (un)representative training (see BL & Hogg, 1703.08112) *But less robust to data complexity... => hierarchical modeling*

Machine learning in physics 2

Emulation: speed up simulations or function evaluations (no representativeness issue)

Parts of a model I don't care about or have no intuition for (unknown functional form and no need to extrapolate).

Example of hierarchical SED modelling with embedded machine learning

BL, Hogg, Wechsler, DeRose (arXiv:1807.0139)

DES SV & photo-z'S (Bonnett + 2015)

- Full SV data: 20+ million objects
- Gold sample: 18 < *i* magnitude < 22.5
- Training: VVDS, VIPERS, OzDES, ACES, 8k objects
- <u>Validation</u>: zCOSMOS, 8k objects

<u>BPZ</u>: template fitting, 8+interpolated SEDs, simple priors

interpretable model but biased photo-z's & under-estimated errors

<u>SKYNET</u>: machine learning (Mixture Density Networks)

unbiased photo-z's but not interpretable & over-estimated errors

Photo-z uncertainty budget

Statistical

Data

Model

Systematic

Aleatoric uncertainties <i>true data noise,</i> <i>flux variances, etc</i>	Data biases misestimated fluxes, zeropoints, variance, etc
Epistemic uncertainties <i>unmodeled SED effects,</i> <i>variability, variance, etc</i>	Model biases <i>miscalibrated SEDs or</i> <i>priors p(z, t, ell, etc)</i>

Full hierarchical model

Full hierarchical model

Hierarchical model: SEDs + corrections

Base SEDs: CWW library
(8)
+ interpolated SEDs

- Linear corrections: NMF/ PCA of CWW and PEGASE SEDs + Gaussian $f_t^{\text{corrections}}(\lambda) + \sum_i \alpha_{it} f_i^{\text{correction}}(\lambda)$
- SED variance constructed from corrections $\operatorname{Var}_{t}(\lambda) = \left(\sum_{i} \beta_{it} f_{i}^{\operatorname{correction}}(\lambda)\right)^{2}$

Hierarchical model: priors

- Magnitude prior: p(ell or m) uniform (in reference band)
- **Type prior**: $p(type = t|m) = v_t(W)$ the $\sum_{i=1}^{n} v_i$

$$\sum_{t} v_t(m) = 1 \ \forall m$$

- = Dirichlet prior on the simplex, with $v_t(m)$ guadratic in m
- **Redshift prior**: (all parameters quadratic in m)

►

Simple N(z):
$$p(z|m,t) = \frac{z}{\overline{z}_t(m)} \exp\left(-\frac{z^2}{2\overline{z}_t(m)}\right)$$

Gridded Gaussian Mixture: $p(z|m,t) = \sum_{i} \gamma_i(m) \mathcal{N}(\mu_i - z; \Delta)$

Hierarchical model: flux/noise

Multiplicative zero point corrections:

►

►

Quadratic in reference magnitude: $\hat{F}_b \longrightarrow \hat{F}_b \times w_b(m)$

General form (neural network!): $\hat{F}_b \longrightarrow \hat{F}_b \times w_b(\hat{F}_1, \cdots, \hat{F}_B)$

Minimum magnitude error per band:

Quadratic in reference magnitude: $\sigma_{\hat{m}_b}^2 \longrightarrow \max[\sigma_{\hat{m}_b}^2, w'_b(m)]$ General (neural network): $\sigma_{\hat{m}_b}^2 \longrightarrow \max[\sigma_{\hat{m}_b}^2, w'_b(m_1, \cdots, m_B)]$

Hierarchical model: posterior

$$p(\vec{\alpha}, \vec{\beta}, \vec{H} | \{\hat{\vec{F}}_i\}) \propto p(\vec{\alpha}, \vec{\beta}, \vec{H}) \prod_{i=1}^{N_{obj}} \sum_{t=1}^{N_{types}} Q_{it}(\vec{\alpha}, \vec{\beta}, \vec{H})$$

- Alpha: parameters of the SEDs / flux model
- Beta: parameters of the data error recalibration
- **H**: parameters of the prior p(z, t, l)
- **Qit**: marginal evidence of the i-th object under the model
- Analytic solution for ell marginalization since additive or multiplicative scaling in Gaussian likelihood
- Here for spectroscopic training set, but could be written for photometric data too!

- Google's toolskit for linear algebra, covering numpy+scipy functionalities
- Build graphs of data/operations + gradients with automatic/symbolic differentiation
- Best optimizers on the market
- Interfaces with deep learning & probabilistic inference libraries
- Great for optimization and modeling. Advanced inference/ sampling via external libraries such as Edward.

Models

interp	prior	SED mean	SED	mag error	N_{par}	$\log[Q]/N_{\rm obj}$	$\log[Q]/N_{\rm obj}$
SEDs	p(z,t,m)	corrections	variances	corrections		(training)	(validation)
2	simple	\checkmark			2398	-9.04	-7.49
2	simple			f(m)	210	17.49	18.34
2	simple	\checkmark		f(m)	2410	19.43	20.00
0	simple	\checkmark	\checkmark		1672	18.57	19.24
2	simple	\checkmark	\checkmark		4598	19.87	20.43
2	GMM	\checkmark	\checkmark		5126	19.73	20.21
2	simple	\checkmark	\checkmark	f(m)	4610	19.83	20.35
2	GMM	\checkmark	\checkmark	f(m)	5138	19.93	20.44
2	simple	\checkmark	\checkmark	NN	5022	19.73	20.33
4	simple	\checkmark	\checkmark	NN	7948	20.43	20.84

Findings

- Cannot eliminate bias without SED corrections or variance (simultaneously optimized with SED priors)
- 2. Models with SED variance or noise have good QQ metrics
- 3. Even with SED variance, some extra g-band noise is

1. Cannot eliminate bias without SED corrections or variance

HM: 2 interpolated SEDs, extra photometric noise (no SED corrections or variance)

2. Models with SED variance or noise have good QQ metrics

HM: 2 interpolated SEDs with SED variance & extra noise

3. Even with SED variance, some extra g-band noise is needed

HM: simple prior, 2 interpolated SEDs, with SED corrections, magerr corrections

HM: simple prior, 2 interpolated SEDs, with SED corrections, variance, magerr corrections

4. Redshift PDFs are more compact/precise

HM: simple prior, 2 interpolated SEDs, with SED corrections, variance, magerr corrections

Findings (continued)

- 5. Outliers are consistent across models
- 6. SED priors and corrections are interpretable
- 7. More complex redshift priors marginally helps
- 8. Number of interpolated SEDs marginally helps
- 9. More complex noise corrections marginally

Example of SEDs and priors (top 8)

HM: simple prior, 2 interpolated SEDs, with SED corrections, variance, magerr corrections

Example of NN noise corrections

HM: simple prior, 4 interpolated SEDs, with SED corrections, variance, magerr corrections (NNs)

Summary

Hierarchical model for self-calibration of photometry & SEDs to self-consistently generate survey data at high accuracy and derive photometric redshifts

<u>Current</u>: re-calibration of SED grid + priors + photometry

Soon: redshift/luminosity-dependent data-driven SEDs, AGN component, spatially-varying photometry

Future: filter responses, image artefacts