HETGS Line Response Function

and

Cross-Calibration "Concordance"

Herman L. Marshall Norbert Schulz, Vinay Kashyap, Paul Plucinsky, Matteo Guainazzi Sep. 27, 2016

HETGS LRF Issue

- Liu (astro-ph/ 1608.07351v1)
 claims 1st order
 lines are too broad
 - Data: 7 AGN Fe-Ka lines
 - Compared 1st to 2nd & 3rd orders
 - Largest effects are apparent in Circinus, Mrk 3, NGC 1068

Sources are Extended

 Circinus, NGC 1068, Mrk 3 have extended photoexcited X-ray emission

0"

Ave. Dispersion Direction NGC 1068 1.5-10 keV

Circinus Galaxy 1.5-10 keV Ave. **Dispersion** Direction Mrk 3 1.5-10 keV Ave. Dispersion Direction

Spatial v. Velocity Broadening

HETGS Update 9/27/16

Spatial v. Velocity Broadening

Unresolved HETGS Lines

- HR 1099 HETG spectroscopy
- Fe XXV line is unresolved
- Lines fit well with released RMF

Cross-Cal Summary

- Assessment of cross-instrument calibration
 - IE0102: Plucinsky+ '16 (in press)
 - Lines in 0.55-1.02 keV range
 - Up to 15% differences with XMM pn
 - PKS 2155-304 & 3C 273: Madsen+ '16
 - LETG/ACIS and HETGS are 10% higher than all but XMM pn
 - XMM pn is 5-10% low of all but Chandra gratings

• Cross-cal with XMM-Newton with blazars

- Many joint observations of AGN
- Fluxes compared in 5 narrow bandpasses
- Analysis on hold pending XMM PSF analysis (pileup handling)

Adjustment of EAs? — Concordance (Meng+ '16)

IE0102 Cross-Cal

Blazar Cross-cal Campaigns

Concordance Overview

- Shrinkage method (Meng et al. 2016)
 - Start with C_{ij} = Counts for instrument i (1..N), source j (1..M)
 - Assume "true" areas A_i , "true" fluxes F_j , $\sigma_{ij} = st$. dev. in $ln(C_{ij})$
 - Estimate F_j by $f_j = C_{ij} / a_i$ ($a_i = prior estimate of A_i$)
 - Method determines "best" \underline{F}_j and "better" EAs $\underline{a}_i = a_i^w (C_{ij}/\underline{F}_j)^{I-w}$
 - w = $I/(I + M\tau^2/\sigma_{ij}^2)$, τ = "a priori" st.dev. in In(a)
 - w = 0 means data dominate, drive change in EA
 - w = I means data are mediocre, EA isn't changed
 - brings $\underline{f}_{j} = C_{ij} / \underline{a}_{i}$ closer to but not precisely to \underline{F}_{j}
- IACHEC team sets τ , runs shrinkage analysis
 - IACHEC team recommends changes from a_i to \underline{a}_i
 - Process runs for each of many bandpasses "independently"

Concordance Actions & Plan

• Done:

- Nail down the math
- Simulate & analyze sample data sets
- Supply "real", trial data sets (IE0102, 2XMM, XMM blazars)
- Apply method to trial data
- Plan:
 - Publish method (Meng/Chen+'16, Annals of Applied Statistics)
 - Publish trial results (Marshall+, AJ or PASP)
 - Add more IACHEC cross-cal results, present at IACHEC # 12
 - Add complexity
 - use smoothness from global models
 - consider handling of RMF uncertainties
 - compare to MCCAL, pyBLoCXS

Concordance I: IE0102

HETGS Update 9/27/16

11/14

Concordance 2:2XMM

- Data from Matteo Guainazzi
- Based on 42 sources from the 2XMM catalog
- Unaffected by pileup; no EA change required

Concordance 3: XMM Blazars

- 117 bright XMM sources from Matteo Guainazzi
- PSF clipped to reduce effect of pileup
- Result: 5% adjustment to pn indicated, I-2% for MOS

Cross-Cal Summary

- Assessment of cross-instrument calibration
 - IE0102: Plucinsky+ '16 (in press)
 - Lines in 0.55-1.02 keV range
 - Up to 15% differences with XMM pn
 - PKS 2155-304 & 3C 273: Madsen+'16
 - LETG/ACIS and HETGS are 10% higher than all but XMM pn
 - XMM pn is 5-10% low of all but Chandra gratings
 - Cross-cal with XMM-Newton with blazars
 - Many joint observations of AGN
 - Fluxes compared in 5 narrow bandpasses
 - Analysis on hold pending XMM pileup correction analysis

• Adjustment of EAs? — Concordance