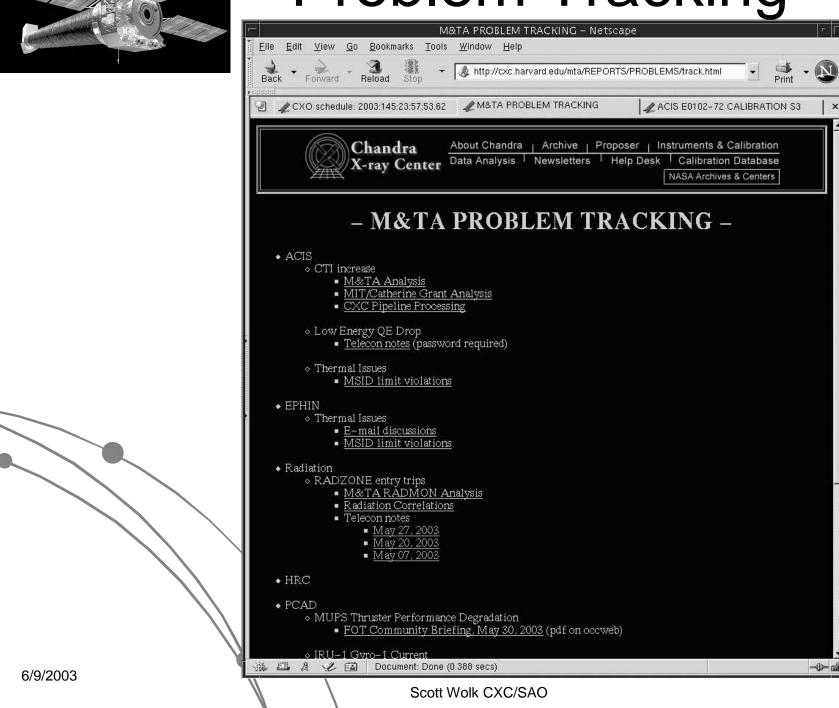



Monitoring and Trends Analysis

Presented to Chandra Users Committee by Scott J. Wolk CXC/SAO

What is MTA?

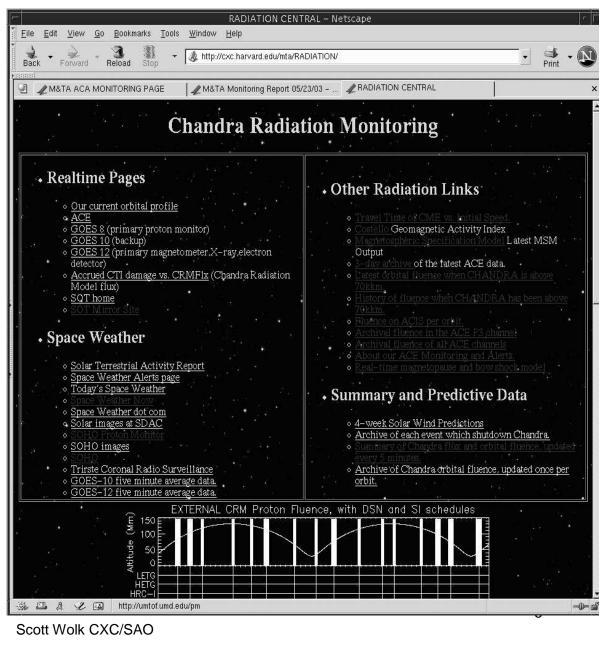
- Objective: To maximize the science return from *Chandra* by monitoring spacecraft performance and predicting future trends.
 - A coordinated approach
 - MTA is not viewed as the function of one scientist.

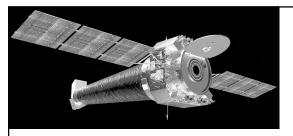

 It is a core function of the SOT & CXC with one scientist taking the lead role as advocate.

Roles

- All members of the SOT and TST participate.
 - IPI Teams, CAL, DOSS.
 - IPI teams advocate for, monitor and trend their instruments.
 - Cal. designs and analyzes observations with specific goals. These include quantifying temporal and spatial responses.
 - DOSS is responsible for the above and:
 - All non-IPI instruments (ACA, SIM, PCAD, etc.)
 - Data flow (real time and database management)
 - Problem tracking
 - All infrastructure
 - http://cxc.harvard.edu/mta/sot.html

Problem Tracking





Specific Monitoring

- Emphasis of work early in mission.
- Realtime data
 - Alerts
- Images
 - Including partial ObsIds when needed
- Spectra
- ACA
- Radiation
 - Alerts

Trending

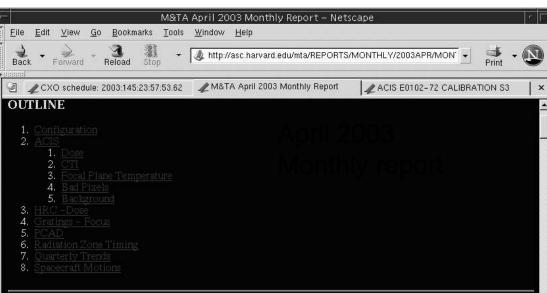
- All data are science data.
- Focus on automated trending.
- Created "operational limits" to augment "health & safety limits."
- Specific attention is given to known problems – (e.g. CTI, Radiation)
- Fidelity issues slow proactive automated analysis of focal plane data.

MTA Trends/Der	ivatives	– Netsca	ine		- 62-	
<u> </u>	Tra cives	Wether	.p.e.			
Back - Forward - Reload Stop - & thtp://asc.har	vard.edu/m	ta_days/m	ta_deriv/		-	e Print
▲ CXO schedule: 2003:145:23:57:53.62 ▲ MTA Trends	/Derivative	s			2-72 CALIBRA	
Please select one of the following reports:			4		e ve chebhin	
ACIS	All	Mins	Maxes	Quarter		
ACIS Thermal Control						
ACIS Thermal Control by Sun angle						
ACIS Thermal Control vs. Sun angle						
ACIS Electronics Side A	000					
ACIS Electronics Side B]	
ACIS Mechanism Controller						
DEA HK Temperatures (under development)						
DEA HK Electronics (under development)						
COMP	All	Mins	Maxes	Quarter		
ACIS Electronics				1		
ACIS Thermal						
Ephin Key Rates L1						
SIM Thermal Side A/B						
HRMA gradients						
EPHIN	All	Mins	Maxes	Quarter		
EPHIN Housekeeping						
EPHIN Temperatures and Voltages					TEPHIN His	togram
EPHIN Temperatures and Voltages vs. Sun angle						
EPHIN Rates						
EPHIN Key Rates EPHIN Rates/Leakage Current vs. Temperature		800				
AXIAL, RADIAL, DIAMETRAL GRADIENT	'S All	Mins	Maxes	Quarter		
HRMA CAP						
HRMA FAP						
HRMA AFT Heater Pit.						
HRMA H-Flexure						

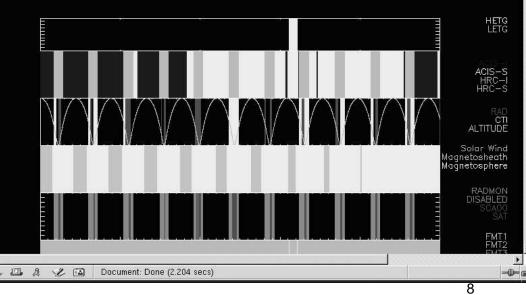
Trend plot: x1de28avo_avgA.gif - Netscape DEA +28V INPUT A

Data Products

- In 1999, the database consisted of daily averages in RDB tables.
- Upgraded to Sybase and higher fidelity in Feb 2002.
- New databases being added
 - Inc. CTI, ACIS HK, LETG & HETG


	aload Stop - 🏼	http://cxc.harvard.edu/cg	i-bin/DataSeeker/dataseek	ker.cgi 🗾 Print 👻				
aaaad 🖉 🥒 Chandra Snapshot Browser		DataSeeker	Z Calibrat	Calibration Observation Trending				
		itaSe						
Current Query Primary (Observation)	Set Primary	Set Secondary	Set Output Help					
Time Start:	>>Next		Reset					
49091424 Time Stop:	Next Step: © Set Indiv. MSIDS © Get Table(s) Select Tables:							
9460800000 Secondary (Config.)	🗆 aciseleca_avg	aciselecb_avg	□acismech_avg	□ acistemp_avg				
Tertiary (Output)	□ batt_temp_avg	□ centreceo_avg	Fephkey_avg	□ ephrate_avg				
Get Times	ephtv_avg	□ epsbatt_avg	□gratgen_avg	□ hrcelec_avg				
	hrchk_avg	□ hrctemp_avg	hrcveto_avg	□ hrmagrad_avg				
		g ∏hrmastruts_avg	□ hrmatherm_avg	∏mta_sc_criteria				
	□ obagrad_avg	⊂obaheaters_avg	Γ	Б				
			obfwdbulkhead_avg	vg pcadftsgrad_avg				
	□ pcadgdrift_avg	🗆 pcadgrate_avg	∏pcaditv_avg	🗆 pcad11cent_avg				
	∏pcadqual_avg	🗆 pcadrwrate_avg	∏pcadtemp_avg	🗆 precoll_avg				
		L	∏simactu_avg	⊏simelec_avg				
	sc_anc_temp_avg	sc_main_temp_avg						
	⊏simtemp_avg	\Box spcelec_avg	∏spceleca_avg	□ spcelecb_avg				
		Extra Search File	15					
	□ccdmfilter	∏cti0_0	∏cti0_1	∏cti0_2				
	∏cti0_3	□ctilst	∏db_att1	∏db_att2				
	∏db_elec1	∏db_elec2	∏db_hrc	∏db_rw1				
	∏db_rw2	∏db_sim	∏db_sun1	🗌 deahk_elec				
	∏deahk_temp	∏ dephem	∏elbi_low	□ ephin_L1				
	🗖 fp_temp	🗖 grat_heg	□grat_leg	□grat_meg				
	🗆 mups_1	🗆 mups_2	🗆 mups_pcad	🗆 mups_prop				
	🗆 obsist	🗖 pcad8	□pcadfilter	∏ sa_ang				

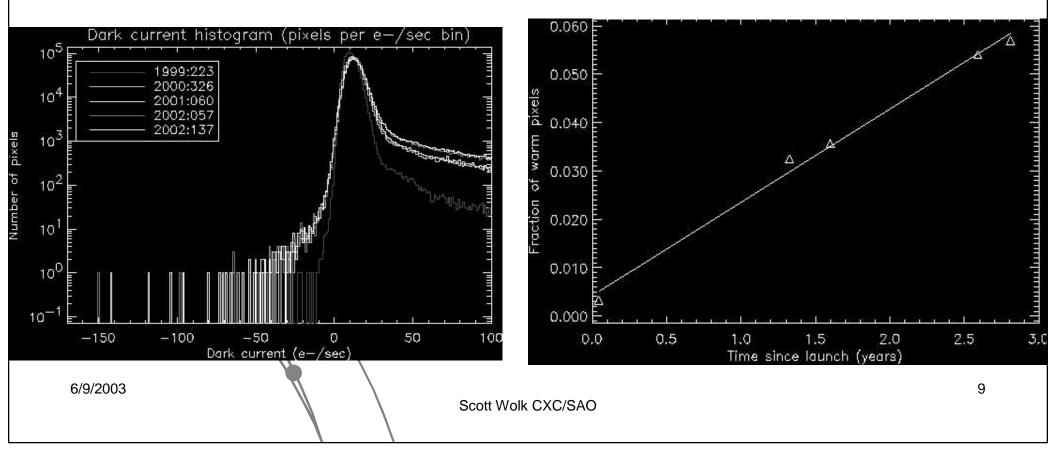
Scott Wolk CXC/SAO



Communication

- Oversee dataflow to IPI teams.
- Alert system
 - Yellow and Red alerts.
- Web system
 - About 100,000 pages.
 - About 800 pages replaced daily.
- Weekly and Monthly Reports
 - Can be delivered to CUC.
 - <u>http://cxc.harvard.edu/mta/</u>
 <u>REPORTS</u>
 - Team overlap

Configuration/Radiation Overview for Apr 2003



Scott Wolk CXC/SAO

Example: Pointing Control & Attitude Determination

- Celestial Location Monitoring
- IRU Current draw is higher than expected.
- MUPS Seem to under-perform when warm.
- Warm Pixels Increasing at a rate of 2-3% per year.
 - Cooling focal plane to ameliorate.

Long Term Prospects

- Chandra
 - Focus
 - Resolving Power
- ACIS
 - ⇔ Low Energy QE
 - ✓ CTI
 - ✓ Bad Pixels
- HRC
 - 🖌 Dose

- EPHIN ⇔ Thermal
- SIM
 - ✓ Motions
 - \Leftrightarrow Thermal
- PCAD
 - ACA ⇔ dark current
 - ✓ offsets
 - ⇔ Gyros
 - ⇔ MUPS

While we may need to change our approach in how we operate the spacecraft, there are currently no issues which indicate that the fundamental capabilities of *Chandra* will change within the next 5 years.