
The Chandra X-ray Observatory Calibration Database (CalDB):

Building, Planning, and Improving

Dale E. Graessle*a, Ian N. Evansb, Kenny Glotfeltyb, X. Helen Heb, Janet D. Evansb,
Arnold H. Rotsc, Giuseppina Fabbianod, and Roger J. Brissendene

Smithsonian Astrophysical Observatory, 60 Garden Street
aMS-70, bMS-81, cMS-67, dMS-06, eMS-02

Cambridge, MA 02138-1516

ABSTRACT

The calibration database implemented for the Chandra X-ray Observatory is the most detailed and extensive CalDB of
its kind to date. Built according to the NASA High Energy Astrophysics Science Archive Research Center (HEASARC)
CalDB prescription, the Chandra CalDB provides indexed, selectable calibration data for detector responses, mirror
effective areas, grating efficiencies, instrument geometries, default source aim points, CCD characteristics, and quantum
efficiencies, among many others. The combined index comprises approximately 500 entries. A standard FTOOLS
parametric interface allows users and tools to access the index. Unique dataset selection requires certain input
calibration parameters such as mission, instrument, detector, UTC date and time, and certain ranged parameter values.
The goals of the HEASARC CalDB design are (1) to separate software upgrades from calibration upgrades, (2) to allow
multi-mission use of analysis software (for missions with a compliant CalDB) and (3) to facilitate the use of multiple
software packages for the same data. While we have been able to meet the multivariate needs of Chandra with the
current CalDB implementation from HEASARC, certain requirements and desirable enhancements have been identified
that raise the prospect of a developmental rewrite of the CalDB system. The explicit goal is to meet Chandra's specific
needs better, but such upgrades may also provide significant advantages to CalDB planning for future missions. In
particular we believe we will introduce important features aiding in the development of mission-independent analysis
software. We report our current plans and progress.

Keywords: Chandra X-ray Observatory, calibration, CalDB, pipelines, analysis software, x-ray astronomy, x-ray

missions

1. INTRODUCTION

The Chandra X-ray Observatory is the most thoroughly calibrated space-borne X-ray mission to date. Its calibration
requirements were known to be extensive from the beginning of the project,1 and many of these requirements have
indeed been met. It stands to reason, then, that Chandra should require the most extensive and detailed calibration
database (CalDB) of any X-ray mission. To wit, the Chandra X-ray Center (CXC) CalDB contains more than 300 files,
and the index files contain collectively over 500 FITS file extensions, each uniquely selectable using the CalDB index
software interface.

The Chandra CalDB has been built according to the HEASARC2 CalDB standard model (version 1.1).3 As such, it
includes a standard directory structure, indexing according to instrument (INSTRUME header keyword), and is
accessible and maintainable using the CALTOOLS subset of the FTOOLS library.4 The index is populated according to

* Send correspondence to DEG; dgraessle@head.cfa.harvard.edu
Copyright 2006 Society of Photo-Optical Instrumentation Engineers
This paper was published in Observatory Operations: Strategies, Processes, and Systems, David R. Silva and Rodger E.
Doxey, editors, Proc. of SPIE vol. 6270, p. 62701X-1, and is made available as an electronic reprint with the permission
of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction,
distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for
commercial purposes, or modification of the content of this paper are prohibited.

the specification given for Calibration Index File (CIF) version 1.1. The CIF incorporates dates, times, paths, filenames,
extension numbers, and the values of certain header keywords contained in the CalDB data files.

The Chandra CalDB serves the following purposes:

• To store and archive calibration data files.

• To maintain a naming convention and header structure for all calibration files.

• To provide an index of calibration data, based on FITS header keywords, for software access.

• To permit updates of calibration data independent of software updates, while maintaining configuration
control.

• To provide a traceable history of calibration data in the database by maintaining versioning.

• To maintain the prescription for translating calibration products into formats suitable for processing and/or
analysis.

• To interface with Chandra software for (1) Standard Data Processing (SDP)5,6 (2) Chandra’s special analysis
package known as CIAO7, and (3) other CalDB-compliant software.

How well the CalDB meets these requirements depends on the due diligence of three CXC teams, namely the Chandra
Calibration teams for the various instruments and spectrometers, the Science Data Systems Planning team (SDS), and
for the purposes of this paper, the CXC Data Systems (CXCDS) staff, including the CalDB manager (DEG). It is an
ongoing effort, mainly due to the dynamics of the Chandra calibration. The CalDB manager must participate in
meetings and interactions with all three of these teams in order to keep up with the changing specific calibration
requirements and results as they are derived.

The Chandra CalDB is maintained online at the CXC for use by the DS pipeline software, as well as for the local CIAO
users. For those users not located at the CXC, a downloadable version of the CalDB is kept online alongside the
Chandra DATA archive8. Figure 1 shows the number of downloads over monthly intervals of CalDB from the archive
server. The volume is significant; currently the main CalDB tar file is approximately 1.0 GB in size, so this corresponds
to approximately 40-100 individual downloads per month.

Fig. 1: CalDB download volume for each month of the mission beginning with the release of CalDB 2.0 in December 2000.

In Section 2, we present the current CalDB definition and implementation. Section 3 details some difficulties we have
encountered in reconciling the CalDB structure with the Chandra calibration requirements. Section 4 relates how the
CXC, with support from HEASARC, is planning to upgrade the current CalDB system to address the issues raised in
section 3. The fifth section details some of the current progress toward this upgrade.

0

20

40

60

80

100

120

D
e
c
-0

0

J
u
n
-0

1

D
e
c
-0

1

J
u
n
-0

2

D
e
c
-0

2

J
u
n
-0

3

D
e
c
-0

3

J
u
n
-0

4

D
e
c
-0

4

J
u
n
-0

5

D
e
c
-0

5

M
o

n
th

ly
 D

o
w

n
lo

a
d

 V
o

lu
m

e
 (

G
B

)

2. THE CURRENT CHANDRA CALDB SETUP

2.1. Basics of the HEASARC CalDB model

The HEASARC (High Energy Astronomy Science Archive Research Center) at the Goddard Space Flight Center, exists
in part as a repository for archival data for any and all high-energy astrophysics space-borne missions. Naturally the
ability to perform research analyses on data from the same or similar sources using similar procedures would be of
paramount importance for the facility. The purpose served by the CalDB structures defined therein are three-fold:

• To separate CalDB data upgrades from software upgrades, so that software patches are not necessary for every
CalDB upgrade.

• To allow multi-mission use of analysis software for missions with a compliant CalDB.

• To facilitate the use of multiple software packages for the same data.

Fig. 2: Generic directory structure for the HEASARC CalDB. The file caldb.indx contains the index listings for its respective index
branch.

Table 1: Chandra portion of the caldb.config control file, which gives the locations of index files for each mission branch of CalDB.

TELESCOP INSTRUME INDEX

DEVICE

INDEX DIR INDEX

FILE

CAL_DEV CAL_DIR

CHANDRA ACIS CALDB data/chandra/acis caldb.indx CALDB data/chandra/acis

CHANDRA EPHIN CALDB data/chandra/ephin caldb.indx CALDB data/chandra/ephin

CHANDRA HRC CALDB data/chandra/hrc caldb.indx CALDB data/chandra/hrc

CHANDRA PCAD CALDB data/chandra/pcad caldb.indx CALDB data/chandra/pcad

CHANDRA SIM CALDB data/chandra/sim caldb.indx CALDB data/chandra/sim

CHANDRA TEL CALDB data/chandra/tel caldb.indx CALDB data/chandra/tel

The HEASARC CalDB directory tree is illustrated in Fig. 2. Note that the “…/data/” branch subdivides into the
individual missions. The missions then divide up into the respective instruments and spacecraft subsystems onboard,
and these subdirectories include their own index files. This structure is actually somewhat flexible below the mission
level, because the index file locations are set up in an ASCII text file called caldb.config, which dwells under the

$CALDB/
docs/

software/

data/
tools/

einstein/

exosat/

<Generic Mission>/

caldb.config

caldb_alias.fits

caldbinit.unix

<instrument1>/

<instrument2>/

<instrument3>/
caldb.indx

bcf/

cpf/

“…/software/tools/” directory. Table 1 includes a portion of the caldb.config file, specifically with components for
Chandra, as an example. It would be possible to set up caldb.config so that all instruments are included in the same
calibration index file. However, that would cause considerable difficulty in establishing the uniqueness of index listings
for specific.

In Table 2 are listed the mandatory CalDB keywords9, that are included in a FITS file header for a typical calibration
file in the CalDB. Table 3 lists the columns of the Calibration Index File (CIF)10 for CalDB version 1.1, the currently
active version of the CalDB at HEASARC. The keyword configuration for each FITS Header-Data Unit (HDU) that is
to be listed in the CIF determines two things:

• The particular CalDB directory in which the file belongs.

• The particular index file in which the HDU is to be listed.

Table 2: Mandatory CalDB keywords version 1.1, as they must appear in the headers of CalDB data files. Those parameters marked
with an asterisk* at the bottom of the table are full-fledged keywords for Chandra data files, but cannot be included as columns in
CIF version 1.1. Hence they must be relegated to the Calibration Boundary (CBD) block.

Keyword Name Allowed Values with

CHANDRA

Index Column Name Description

TELESCOP CHANDRA TELESCOP Name of the mission.

INSTRUME ACIS, EPHIN, HRC, PCAD,
SIM, TEL

INSTRUME The science instrument to which the data
correspond.

DETNAM ACIS-n (n=0-9), HRC-I, HRC-
S, ACA-P, ACA-S, HRMA,

PIXLIB, GRATING

DETNAM The subset of the science instrument in question,
(detector name).

FILTER NONE FILTER The intervening absorbing filter used.

CALCLASS PCF, BCF, CPF CAL_CLAS The calibration file class, PCF = primary
calibration file, BCF=basic calibration file,
CPF=calibration product file.

CALDTYP DATA, FEF, TASK CAL_DTYP Cal file type, such as actual data, FITS-
embedded function, or virtual data.

CCNM0001 See Table 4. CAL_CNAM CODENAME, the name of the type of
calibration data. Used to identify desired dataset

CVSD0001 <yyyy-dd-mmThh:mm:ss> CAL_VSD Calibration validity start date.

CVST0001 <hh:mm:ss> CAL_VST Calibration validity start time.

CBDn0001, n=1-9 Various CAL_CBD Calibration Boundary Conditions.

CDES0001 Any ASCII text CAL_DESC Text description of the dataset.

GRATING* HETG, LETG Must be in CAL_CBD CHANDRA: Name of the grating used.

GRATTYPE* HEG, MEG, LEG Must be in CAL_CBD CHANDRA: Grating type, HEG, MEG, LEG.

CTI_CORR* BOOLEAN Must be in CAL_CBD CHANDRA: CTI correction: TRUE or FALSE.

READMODE* TIMED, CONTINUOUS Must be in CAL_CBD CHANDRA: ACIS event read setting.

DATAMODE* FAINT, VFAINT, GRADED Must be in CAL_CBD CHANDRA: ACIS data collection mode.

OBS_MODE* ‘SECONDARY’, ‘POINTING’,
‘RASTER’, ‘SCAN’, ‘SLEW’

Must be in CAL_CBD CHANDRA: Observation mode setting.

Table 3: CalDB version 1.1 CIF columns. The CIF in CalDB version 1.1 has a fixed file definition.

Column Name Data Type Header Keyword Description

TELESCOP String[10] TELESCOP Same as TELESCOP in Table 2.

INSTRUME String[10] INSTRUME Same as INSTRUME in Table 2.

DETNAM String[20] DETNAM Same as DETNAM in Table 2.

FILTER String[10] FILTER Same as FILTER in Table 2.

CAL_DEV String[20] - Device specification for the CalDB file, “ONLINE” for live in the
directory, “OFFLINE” for absent, <device name> for other location.

CAL_DIR String[70] - Path to the directory containing the CalDB file.

CAL_FILE String[40] - Name of the calibration file.

CAL_CLAS String[3] CCLS0001 Same as CCLS0001 above.

CAL_DTYP String[4] CDTP0001 Same as CDTP0001 above.

CAL_CNAM String[20] CCNM0001 Same as CCNM0001 above.

CAL_CBD[9] String[70](9) CBDn0001, n=(1-9) The CBD block.

CAL_XNO Int2 - The FITS extension number containing the calibration data. May be
zero if the primary HDU (e.g. an image) is used.

CAL_VSD String[10] CVSD0001 Same as CVSD0001 above.

CAL_VST String[8] CVST0001 Same as CVST0001 above.

REF_TIME Real8 - The MJD corresponding to CAL_VSD/CAL_VST.

CAL_QUAL Int2 - The “quality” of the calibration data. Only 0 (=GOOD) and 5
(=BAD) have been implemented in CalDB/CIF version 1.1.

CAL_DATE String[10] - The UTC when this entry was added to the index file, yyyy-dd-mm.

CAL_DESC String[70] CDES0001 Text description of the dataset.

A certain subset of FTOOLS, namely CALTOOLS11, includes several routines that will perform the various functions
needed to build and maintain a CalDB for a generic mission. These are the following:

• crcif: Creates an empty CIF version 1.1 file on the default directory, named caldb.indx.

• udcif: Updates a CIF one file at a time, listing all HDU’s that contain a mandatory set of keywords.

• caldbflag: Allows the CalDB manager to change or update individual column values in a particular index
listing, or group of listings.

In order to read the index file, either interactively or from an Application Programming Interface (API), one may use the
CALTOOL routines

• quzcif: Searches the appropriate index file for matches to a set of required calibration data specifications. This
routine is the heart of the CalDB 1.1 software interface. quzcif takes input parameters in the following order:
§ mission: Actually, the value of TELESCOP applicable, required
§ instrument: The value of the INSTRUME keyword applicable, required
§ detnam: The value of DETNAM that is relevant, if any, otherwise “-“
§ filter: The applicable filter designation, if any, otherwise “-“
§ codename: The value of CCNM0001 i.e. the desired calibration data set type, required
§ date: The starting date of the observation in format “yyyy-mm-dd”, required
§ time: The hour-minute-second of the start of the observation, in “hh:mm:ss.sss”
§ expr: A text expression enclosed in single quotes, which gives values of specific boundary conditions as

may exist in the desired indexed HDU. If none known or applicable, then use “-“

• lstgood: Lists the good entries in a given index file for a given mission. Interactive use only.
Note that the user or the API must “know” the relevant parameter values in order to get an actual and unique index
entry. There is no automatic means to determine such values for a given TELESCOP, INSTRUME, and CCNM0001.
Therefore, particularly in the case of an API, the information to input to quzcif must be known in advance and hard-
coded into the software.

The selection hierarchy works in the following order:

• For parameters instrument, codename: An exact match is required.

• For parameters detnam and filter: As these are optional FITS keywords, if a value of NONE is entered in the
INDEX file, then any value entered in the calling routine will be ignored. Otherwise an exact match is
required.

• For parameters date and time: These values are converted into the REF_TIME value in MJD, a double-
precision numerical. For a given observation starting time, also converted into MJD, the INDEX listing with
the latest REF_TIME before the starting time will be selected.

• For elements specified in expr: These are the boundary conditions, which are compared successively with the
CAL_CBD column elements. If there is a parameter match, then values are compared with the indexed value
or range of values. If the values do not match, the selection is excluded. If a parameter name doesn’t match any
of the parameters stored in the boundary column, then that parameter specification is ignored in the search.

2.2. The current Chandra CalDB implementation

Also included in Table 2 are the specific values for the keywords permitted by the Chandra branch of the HEASARC
CalDB. This branch is the one built and maintained at the Chandra X-ray Center (CXC) by the author (DEG), with the
support and/or approval of coauthors INE, JDE, GF (supervisor), and RJB (CXC program manager). In addition,
Table 2 includes some additional keywords that Chandra CalDB files must address in some way to determine their
applicability, including the GRATING and GRATTYPE keywords, which may be applicable to any INSTRUME and
DETNAM configuration with Chandra. “GRATING” is a required keyword for Chandra FITS files in its own right; it
is not a FILTER or INSTRUME value, and is not primarily associated with either ACIS or HRC. For the current
Chandra CalDB setup, we have employed (or rather “usurped”) the spacecraft subsystem “TEL” for certain spacecraft
geometry libraries (PIXLIB), the HRMA calibration files, and the GRATING calibrations. However, “TEL” is not an
instrument proper, and no science data are ever associated with it. By CXC FITS convention, INSTRUME = TEL
admits of DETNAM settings of “PIXLIB”, “HRMA”, and “GRATING”. Hence we have elected to store PIXLIB,
HRMA, and GRATING CalDB files in the directory branch “$CALDB/data/tel/”. Codenames such as GREFF,
AXEFFA, VIGNET, AIMPTS, and SKY are indexed under the “tel” branch, and may only be selected by specifying
ISNTRUME = TEL in quzcif or quizcaldb.

In Figure 3 below, we have illustrated three calls to the CalDB index using the CXCDS/CIAO tool quizcaldb. This tool
is a C-wrapped version of the CALTOOL quzcif, described in Section 2.1 above. For quizcaldb, the parameter inst is the
same as INSTRUME, and detector corresponds to DETNAM. Mission is used for TELESCOP.

Fig. 3: Example of Chandra CalDB calls with quizcaldb, for ACIS gain, HETG (MEG) grating efficiency, and HRC-S/LETG
summed first order PIMMS effective area. Specific knowledge of the CalDB index listings is necessary to obtain a unique filespec.

Table 4 lists all codenames relevant to the Chandra CalDB, and their associated instruments and text descriptions, with
a list of parameters whose values must be specified to call a unique file and extension number from the CalDB. In
several cases with grating files that are associated with the instruments ACIS or HRC, the file is stored in the
…/tel/gratings/<GRATING>/ subdirectory, but is indexed in the ACIS or HRC instrument index branch. This is
because the INSTRUME values for these files are set to ACIS or HRC, and the quizcaldb command will not find the
files unless they are indexed under those branches, no matter where they are stored. We thought this was the best way to
make the files intuitively accessible to the users, but still to have quzcif serve its function properly.

quizcaldb call:
MISSION=CHANDRA
INST=ACIS
CODENAME=DET_GAIN
DETECTOR=-
FILTER=-
DATE,TIME=TSTART
EXPR=‘FP_TEMP.EQ.153.AND.
CTI_CORR.EQ.YES’

caldb.config ACIS

EPHIN
HRC
PCAD
SIM
TEL

INDEX search:
$CALDB/data/chandra/acis/bcf/gain/
acisD2000-01-29gain_ctiN0005.fits
[AXAF_DETGAIN]

quizcaldb call:
MISSION=CHANDRA
INST=TEL
CODENAME=GREFF
DETECTOR=GRATING
FILTER=-
DATE,TIME=TSTART
EXPR=‘GRATTYPE.EQ.MEG
.AND.SHELL.EQ.1000’

caldb.config ACIS
EPHIN
HRC
PCAD
SIM

TEL

INDEX search:
$CALDB/data/chandra/tel/
grating/hetg/bcf/greff/
hetgD1996-11-01greffpr001N0005.fits
[AXAF_GREFF1]

quizcaldb call:
MISSION=CHANDRA
INST=HRC
CODENAME=PIMMS_EA
DETECTOR=HRC-S
FILTER=-
DATE,TIME=TSTART
EXPR=‘GRATING.EQ.LETG
.AND.GRATTYPE.EQ.LEG
.AND.AONUMBER=CY08
.AND.TG_ORDER.EQ.FIRST’

caldb.config ACIS
EPHIN
HRC

PCAD
SIM
TEL

INDEX search:
$CALDB/data/chandra/tel/grating/
letg/cpf/pimms/
hrcsleg1D2005-11-30pimmsN0008.fits
[SPECRESP]

Example A: ACIS gain

Example B: MEG grating efficiency

Example C: HRC-S LEG summed first order PIMMS EA:

Table 4: List of codenames, or data set types, applicable to Chandra pipeline processing (SDP) and analysis software (CIAO).

Codename

(CAL_CNAM)

Applicable Instruments

/ Gratings

quizcaldb parameter specifications required for

unique selection

(excluding mission, codename, date, and time)

2D_PSF ACIS, HRC inst, detector, grid size

AIMPTS TEL (PIXLIB) inst

ALIGN/FID_POS PCAD inst

AMP_SF_COR HRC inst, detector

BADPIX ACIS, HRC, PCAD inst, detector, expr: FP_TEMP

BKGRND ACIS inst, detector, expr: FP_TEMP, CCD_ID

CCD_CHAR PCAD inst, detector

CCD_RESP PCAD inst, detector

CTI ACIS, PCAD inst, detector, expr: FP_TEMP, CCD_ID

DARK_CURR PCAD inst, detector

DEGAP HRC inst, detector

DET_GAIN ACIS inst, expr: FP_TEMP, CTI_CORR

DET_POS SIM inst

DET_POSCORR SIM inst

EFTEST HRC inst, detector

EVTSPLT HRC inst, expr: READMODE

FEF_PHA ACIS inst, expr: FP_TEMP, CTI_CORR

FDC PCAD inst

FPTEST HRC inst, detector

GAPLOOKUP HRC inst, detector

GEOM EPHIN, TEL (PIXLIB) inst

GMAP HRC inst, detector

GRADE ACIS inst, expr: DATAMODE

GTI_LIM ACIS, HRC inst, detector, expr: OBS_MODE

IRMF ACIS inst

IRU PCAD inst

MATRIX ACIS, HRC inst, detector

OBI_TOLS TEL inst, detector, expr: OBS_MODE

OSIP ACIS (with grating) inst, detector

P2_RESP ACIS inst, expr: FP_TEMP, CTI_CORR

QE ACIS, HRC inst, expr: CCD_ID, FP_TEMP

QEU ACIS, HRC inst, expr: CCD_ID, FP_TEMP

RWS PCAD inst

SATTEST HRC inst, detector

SFMA PCAD inst

SGEOM TEL (PIXLIB) inst

SKY TEL (PIXLIB) inst

TAPRINGTEST HRC inst, detector

TDET TEL (PIXLIB) inst

T_GAIN ACIS inst, expr: FP_TEMP, CTI_CORR

TGMASK2 HRC inst, detector

TGPIMASK2 HRC inst, detector

AXEFFA TEL (HRMA) inst, expr: SHELL

VIGNET TEL (HRMA) inst, expr: SHELL

WPSF TEL (HRMA) inst

GREFF TEL (GRATING) inst, expr: GRATING, GRATTYPE, SHELL

LSFPARM ACIS, HRC inst, detector

PIMMS_EA ACIS, HRC inst, detector, expr: AONUMBER, GRATING,
GRATTYPE, TG_ORDER

3. SOME DIFFICULTIES WITH THE CURRENT IMPLEMENTATION

As indicated above, HEASARC CalDB version 1.1 has certain fundamental assumptions and paradigms that may not
apply to a particular mission. The difficulties we have encountered in this implementation may be enumerated as
follows.

• Index specification is rigid, depends on INSTRUME.

• Configurational keywords such as GRATING, GRATTYPE, OBS_MODE, must be specified as boundary
conditions, even though they are better specified as CalDB keywords.

• FILTER keyword is unnecessary for Chandra, optional for FITS, but required in CIF. DETNAM is required in
CIF, but not useful for ACIS.

• Calibration parameters such as boundary conditions must be hard-coded into the tools, which makes them
mission-specific.

• Some features of the CalDB interface are undocumented; some documented features have not been fully
implemented. We have identified these by experimentation.

• Updates to CALTOOLS software require a release of FTOOLS, which requires significant lead time.

• Other new missions’ calibration database teams find CalDB index specification 1.1 inappropriate for their
configurations. Some have avoided building a CalDB for HEASARC.

To be sure, the Chandra CalDB may now be built and fully maintained with the CALTOOLS software, and the addition
of a CXCDS-built boundary block editor. The Chandra CalDB has been upgraded 36 times since the installation of
CalDB 1.0 in March of 2000. Currently, the Chandra CalDB index includes 589 listings. The CalDB directory contains
376 files. Each index listing may be selected uniquely by a particular specification of parameters to quizcaldb, and the
index has been built and maintained almost entirely using the CALTOOLS. However, we find that certain
improvements to the interface would greatly enhance the applicability of CalDB to new configurations and missions,
and hence the CXCDS is now moving toward implementation of a new CalDB system, with the support of the
HEASARC.

4. A NEW CALDB INITIATIVE

As part of the recent HEASARC Senior Review Proposal and Contract (HEASARC Software Archives grant), the
CXCDS has proposed the following initiatives for the Chandra CalDB, in three directives:

• Modify the CalDB interface to allow for improved mission-independent software usage.

• Implement the selection of related data files for downstream processing to be consistent with upstream
processing. This would be helpful for higher-level pipeline processing as well as analysis of archival data
without reprocessing by the users.

• Provide certain design scars in these modifications to allow further software additions. Specifically we want to
add features for better ease-of-use in implementing a new HEASARC-style CalDB for a new mission.

We have translated the above initiatives into the following current activities specific to the Chandra CalDB interface:

• Generalize the CIF to be adjustable to the configuration and calibration requirements of specific missions.

• Provide a sufficiently flexible interface to read the generalized CIF.

• Allow for the automatic handling of calibration parameters such as boundary conditions and configuration
keywords, so that the API does not require hard-coding of these parameters in each call to the CalDB.

• Provide backward compatibility with the existing missions represented in the HEASARC CalDB, through the
addition of one or more default configuration control files for those missions.

There are actually two levels of software needed to separate mission-specific calibration parameters and data from the
API of the analysis tools. First, there must be an intermediate library to determine which specific data types (here,
codenames) will be required for a given mission for the task at hand, and to manipulate the calibration data once located
into the correct units or interpolation grids for the API. For Chandra’s data analysis system, CIAO, this is done mainly
by the ARDLIB12. Second, below the ARDLIB level, the CalDB interface must handle calibration parameters and the
index requirements for unique file and extension selection. The calibration parameters must generally be supplied from

the headers of the observation data files being used in the desired analysis. (For cases in CIAO where the ARDLIB is
not used, this interaction must be done at the tool level; hence in this case the tool must “know” what is needed and in
what format it will be found. Such a tool is not mission-independent.) In any case, there must be some means of hand-
shaking between the analysis process and the CalDB interface, so that calibration parameters may be passed back and
forth to satisfy an automatic CalDB query. In the next section, we present an overview of how that may be done in the
new Chandra CalDB interface design. For now we shall designate the upgrade as HEASARC CalDB/CIF version 2.0.

5. CURRENT PROGRESS

Our current activities were begun in August 2005 with the drafting of a requirements document for the new CIF
definitions and the query interface software. Our intention is to document the upgrades thoroughly, including those
aspects that apply to backward compatibility with existing CalDB branches. While the interface document continues to
be modified and updated with additional specifications and clarifications, some progress has been made constructing the
interface software, and the first phase of this is nearly ready for testing with a live CalDB and a new CIF.

5.1. The new CIF definition and key.config

We have dispensed with the INSTRUME subdirectory paradigm, so that now this keyword is no longer mandatory, but
may be specified as a query keyword for a specific value of the codename. The new CIF may be more easily defined in
terms of the types of keywords now to be included as columns in the file. There are three types of keywords to be
specified: mandatory, query, and optional. Tables 5, 6, and 7 give an example of a subset of keywords which would
appear as columns in a generalized CIF. Given the keywords specified in these tables, we require a systematic means to
control the CIF structure a priori in the process of building and populating it. We have elected to include this
information in a human-readable text file called key.config, similar to caldb.config discussed earlier.

The specification for key.config for the example in question is given in Table 8. The index-building routine reads this
information and uses it to specify the index file or files for the given CalDB. The index-reading tool uses the key.config
to set up the I/O for reading the index file, to identify necessary parameters for which values need to be supplied, and
finally to select a unique index entry if essential parameters can be assigned appropriate values.

5.2. The CalDB query interface

The new CalDB query interface works in two query levels. The first-level query takes only the mission name and the
codename for the desired data type, uses the key.config module to determine how to read the CIF, then queries the
appropriate CIF for all occurrences of the given codename, and determines a minimum subset of the query and
mandatory keywords that must be specified in order to obtain a unique index listing. This information is passed back to
the API to provide the required parameter specifications, most frequently from the headers of observation data files (that
must be available to do the desired analysis).

Subsequently, a second-level query may be submitted to the index routine, which in turn calls upon the key.config
module for CIF information, and then produces the listing dictated by the available parameters. What is passed back to
the API is simply the path, the filename, and the extension where the data are found. If an ARDLIB is employed, it will
use further mission-specific information regarding the available calibration data to condition those data for use by the
active analysis tool or process. Otherwise, the tool itself must know the mission, codename, and anticipated data format
in the specific CalDB listing returned by the query interface. The two-level query is illustrated in Fig. 4, with Examples
A and B shown for the corresponding cases shown in Fig. 3.

Alternatively, the first level query may be skipped, if the API or the user already knows which parameters to specify,
and how to specify them. We refer to Example C in Fig. 4, the case for a PIMMS effective area file. In this case, only a
second-level query is required, and a unique index listing, or if desired a series of index listings, may be obtained. A
user might actually want to review multiple listings to verify the data structure of the CalDB for a given codename, for
example. In any case, the interface may be used either in the two-level (or “hand-shaking”) mode, or in the single-query
mode similar to using quizcaldb with the old interface. Hence, older analysis systems for earlier missions could be

refitted (with some software modification) to use the new interface for any existing CalDB, provided the appropriate
default “key.config” file is built for that mission’s CalDB.

Table 5: Mandatory INDEX columns in the new CIF (version 2.0) specification. Any CIF must have these keywords, regardless of
key.config specification.

Index File Column

Name
Data Type Format Equivalent

Header Keyword
Description

CAL_DEV string char20 “ONLINE” for calibration files present in the CalDB
tree. “OFFLINE” if not. “<device name>” for files
located in another area.

CAL_DIR char70 The path to the directory containing the calibration file
specified by CAL_FILE.

CAL_FILE char40 The name of the calibration file.

CAL_CNAM char20 CCNM0001 The codename for the kind of calibration data the
interface is asking for from the API or user.

CAL_CBD char70[9] CBDn0001 Calibration boundary conditions

CAL_XNO int int The FITS extension number for the requested dataset

CAL_QUAL int int The “quality” or usability of the calibration data.

CAL_DATE string char10 The UTC date when this entry was added to the index
file, in yyyy-mm-dd format.

Table 6: Specified query columns for CIF version 2.0, from key.config, for the examples to be used in three CalDB calls in Fig. 4.

TELESCOP string char10 TELESCOP Name of the mission, used to select CalDB tree.

INSTRUME string char10 INSTRUME Science instrument system or full detector array.

DETNAM string char20 DETNAM Sub-element(s) of INSTRUME pertinent to the
calibration.

GRATING string char3 GRATING Chandra Grating, one of HETG or LETG.

GRATTYPE string char4 GRATTYPE Grating type, one of “LEG”, “HEG”, or “MEG”

CYCLE_NO string char70 AONUMBER Name for a proposal cycle, e.g. ‘AO-1’, ‘CY08’.

Table 7: Optional columns, which may be specified in key.config. Some of these allow backward compatibility with existing mission
CalDB trees.

CAL_CLAS string char3 CCLS0001 The calibration file class, one of “BCF” or “CPF”. Not
interpreted by software.

CAL_DTYP string char4 CDTP0001 The type of the calibration file, one of “DATA”,
“FEF”, or “TASK” (virtual data). Not interpreted by
software.

CAL_DESC string char70 CDES0001 Short string description of the calibration data. Not
interpreted by software.

CAL_VSD string char10 CVSD0001 Calibration validity start date, UTC, yyyy-mm-dd

CAL_VST string char8 CVST0001 Calibration validity start time, UTC, hh:mm:ss

REF_TIME double double The MJD corresponding to CAL_VSD / CAL_VST.
Used to compare with the observation date, to
determine that calibration data are valid for that date.

CAL_VED string char10 CVED0001 Calibration validity END date, UTC, yyyy-mm-dd

CAL_VET string char8 CVET0001 Calibration validity END time, UTC, hh:mm:ss

END_TIME double double The MJD corresponding to CAL_VED/CAL_VET.

FIDELITY double double FDLT0001 Numeric “fidelity” of calibration data; may be used to
select amongst different datasets with overlapping
query requirements.

Fig. 4: Illustration of the two-level CalDB/CIF version 2.0 query with hand-shaking, using three example codenames and
configurations. These are the same examples as used in Figure 3.

API àààà CalDB Call
Example A:
CODENAME = DET_GAIN
MISSION = CHANDRA

Example B:
CODENAME = GREFF
MISSION = CHANDRA

Note: MISSION parameter may be specified
or allowed to be a default value, which would
be CHANDRA for these cases.

CalDB interface (version 2.0)

…Back to the API…
INFILE Stack =*evt2.fits, *evt1.fits, *pha2.fits
(parameter values from FITS headers):
Example A: INSTRUME = ACIS
FP_TEMP = 153.2 (in Kelvin)
CTI_CORR = ‘TRUE
Example B: GRATING = HETG
GRATTYPE=MEG
SHELL = 1000

OPTIONALLY: Skip Level 1 Query.
(Inteface must then use KEY CONFIG to
determine CALDB INDEX structure.):
Example C:
CODENAME = PIMMS_EA
MISSION = CHANDRA
INSTRUME = HRC
DETNAM = HRC-S
DATE,TIME ß TSTART
GRATING = LETG
GRATTYPE = LEG
TG_ORDER = 1
CYCLE_NO = CY08

$CALDB/data/chandra/<any sub-path>/
acisD2000-01-29gainN0005.fits

[AXAF_DETGAIN]

a)

$CALDB/data/chandra/<any sub-path>/
hetgD1999-11-01greffpr001N0005.fits

[AXAF_GREFF1]

b)

$CALDB/data/chandra/<any sub-path>/
hrcsleg1D2005-11-30pimmsN0008.fits
[SPECRESP]

c)

KEY CONFIG

Use these tabulated specifications to set
up the read for caldb.indx.

CALDB CONFIG

Identify caldb.indx, key.config file
pair(s) for query specified or defaulted.

CALDB INDEX

Find and return query column names and
boundary condition parameter names for
which a non-null specification is required
for the given CODENAME.
Return to API for Level 2 query.

Use the set of query column and boundary
condition names, with associated values to
select any and all matches in INDEX.

RETURN SETTING

- ALL MATCHES
àààà SINGLE MATCH

- FIRST MATCH (with warning)
- LAST MATCH (with warning)

…Return to API, continue

with processing or analysis…

LEVEL 1
QUERY

LEVEL 2
QUERY

…Hand-shaking with API…

Table 8: The key.config table that would be necessary for our examples given in Figure 4.

colName dataType Format hdrKey queryCol nullVal
CAL_CBD String char70[9] CBD* no “NONE”

CAL_CLAS String char3 CCLS* no “BCF”

CAL_DTYP String char4 CDTP* no “DATA”

CAL_DESC String char70 CDES* no “”

FIDELITY Double Double “” no 0.0

TELESCOP String char10 TELESCOP yes “”

INSTRUME String char10 INSTRUME yes “NONE”

DETNAM String char20 DETNAM yes “NONE”

GRATING String char20 GRATING yes “NONE”

GRATTYPE String char10 GRATTYPE yes “”

CYCLE_NO String char4 AONUMBER yes “”

6. ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with HEASARC CalDB representative Dr. Michael C. Corcoran, NASA-
GSFC, Greenbelt, MD. We also acknowledge the creator of the HEASARC CalDB system, Ian M. George. This work is
supported by NASA under Chandra X-ray Center Contract Number NAS8-03060, and by the HEASARC Software
Archives under grant number NNG05GH50G.

REFERENCES

1. D.A. Schwartz, L.P. David, R.H. Donnelly, R.J. Edgar, T.J. Gaetz, D.E. Graessle, D. Jerius, M. Juda, E.M. Kellogg,

B.R. McNamara, P.P. Plucinsky, L.P. Van Speybroeck, B.J. Wargelin, S. Wolk, P. Zhao, D. Dewey, H.L.
Marshall, N.S. Schulz, R.F. Elsner, J.J. Kolodzeijczak, S.L. O’Dell, D.A. Swartz, A.F. Tennant, M.C.
Weisskopf, “Absolute effective area of the Chandra High-Resolution Mirror Assembly (HRMA)”, in Proc.
SPIE, 4012, pp. 28-40, 2000.

2. HEASARC = High Energy Astrophysics Archive Research Center, at the Goddard Space Flight Center, Greenbelt,
MD. See http://heasarc.gsfc.nasa.gov/.

3. See NASA’s “HEASARC Calibration Database” at http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html
4. See "NASA's HEASARC Software" at web link http://heasarc.gsfc.nasa.gov/docs/software/ftools/ftools_menu.html.
5. Janet D. Evans, M. Cresitello-Dittmar, S. Doe, I. Evans, G. Fabbiano, G. Germain, K. Glotfelty, D. Hall, D.

Plummer, P. Zografou, “The Chandra X-ray Center Data System: supporting the mission of the Chandra X-ray
Observatory”, Proc. SPIE, 6270, (these proceedings).

6. Ian N. Evans, M. Cresitello-Dittmar, S. Doe, J. Evans, G. Fabbiano, G. Germain, K. Glotfelty, D. Plummer, and
P. Zografou, “The Chandra X-ray Observatory data processing system”, Proc. SPIE, 6270, (these
proceedings).

7. Antonella Fruscione, J.C. McDowell, G. Allen, N. Brickhouse, D.J. Burke, J. Davis, N. Durham, M. Elvis, E.C.
Galle, D.P. Huenemoerder, J. Houck, B. Ishibashi, M. Karovska, M. Nowak, F.A. Primini, A. Siemiginowska,
“CIAO: Chandra’s data analysis system”, Proc. SPIE, 6270, (these proceedings).

8. Michael C. McCollough, Arnold H. Rots, and Sherry L. Winkelman, “Chandra Data Archive Operations: Lessons
Learned”, Proc. SPIE, 6270, (these proceedings).

9. “Mandatory Calibration File Keywords”, http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_keywords.html.
10. Ian M. George, Bill Pence, “Calibration Index Files”,

http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_008/cal_gen_92_008.html.
11. Ian M. George, Ron S. Zellar, Rehana Yousaf, “Summary of CALTOOLS Tasks”,

http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_sw_93_004/cal_sw_93_004.html
12. John E. Davis, “A Framework for the Development of Multi-Mission Software”, in Astronomical Data Analysis

Software and Systems IX, eds. N. Manset, C. Veillet, and D. Crabtree, 1999.

